Fornés JA
Instituto de Física, Universidade Federal de Goiás, C.P. 131, Goiânia, GO, 74001-970, Brazil
J Colloid Interface Sci. 2000 Feb 1;222(1):97-102. doi: 10.1006/jcis.1999.6615.
The polarizability and corresponding dielectric relaxation of the Debye-Hückel (DH) atmosphere surrounding a charged rod-like polyelectrolyte immersed in an ionic solution of a symmetrical electrolyte is determined following the method developed by J. A. Fornés [Phys. Rev. E 57, 2110 (1998)]. Several formulas are given to estimate the DH atmosphere parameters, namely, the polarizability at zero frequency, alpha(0), the relaxation time, tau, the cloud capacitance, C, the average displacement of the ionic cloud, delta, the square root dipole moment quadratic fluctuation, <p(2)>(1/2), and the thermal fluctuating field, <E(2)>(1/2). The Poisson-Boltzmann equation is solved numerically to apply the theory to a highly charged polyelectrolyte such as DNA in solution, although formulas valid for the DH approximation are also given. A dispersion in the polarizability and correspondingly in the dielectric constant of these solutions in the microwave region is predicted. For instance, considering a DNA length of 1000 Å, with its reduced linear charge density xi(0)=4.25 and ionization factor gamma=0.5, immersed in a NaCl solution (40 mM), we predict a polarizability of the DH atmosphere at zero frequency alpha(0) of 1x10(-33) Fm(2) ( approximately 6.1x10(6)) times greater than the mean value of the polarizability of water) and the corresponding fluctuating dipole moment p of 2.1x10(-27) Cm ( approximately 600 times greater than the permanent dipole moment of water molecule). The relaxation time and the average displacement of the ionic cloud are tau=1.6 ns and delta=14. Å, respectively. This displacement is produced by the thermal fluctuating field, which, in this case, at room temperature is <E(2)>(1/2)=2 x10(6) V/m. Copyright 2000 Academic Press.
按照J. A. Fornés [《物理评论E》57, 2110 (1998)] 所提出的方法,确定了浸没在对称电解质离子溶液中的带电棒状聚电解质周围德拜 - 休克尔(DH)气氛的极化率及相应的介电弛豫。给出了几个用于估算DH气氛参数的公式,即零频率下的极化率α(0)、弛豫时间τ、云电容C、离子云的平均位移δ、偶极矩平方涨落的平方根<p(2)>(1/2)以及热涨落场<E(2)>(1/2)。通过对泊松 - 玻尔兹曼方程进行数值求解,将该理论应用于溶液中如DNA这样的高电荷聚电解质,不过也给出了适用于DH近似的公式。预测了这些溶液在微波区域极化率以及相应介电常数的色散情况。例如,考虑一条长度为1000 Å的DNA,其折合线性电荷密度ξ(0)=4.25且电离因子γ = 0.5,浸没在NaCl溶液(40 mM)中,我们预测DH气氛在零频率下的极化率α(0)为1×10⁻³³ Fm²(约为水的极化率平均值的6.1×10⁶倍),相应的涨落偶极矩p为2.1×10⁻²⁷ Cm(约为水分子永久偶极矩的600倍)。离子云的弛豫时间和平均位移分别为τ = 1.6 ns和δ = 14 Å。这种位移是由热涨落场产生的,在这种情况下,室温下<E(2)>(1/2)=2×10⁶ V/m。版权所有2000,学术出版社。