Suppr超能文献

大肠杆菌中二核苷酸重复序列不稳定性的机制。

Mechanisms of dinucleotide repeat instability in Escherichia coli.

作者信息

Bichara M, Pinet I, Schumacher S, Fuchs R P

机构信息

Cancérogénèse et Mutagénèse Moléculaire et Structurale, UPR 9003, CNRS, Pôle API, 67400 Strasbourg-Illkirch, France.

出版信息

Genetics. 2000 Feb;154(2):533-42. doi: 10.1093/genetics/154.2.533.

Abstract

The high level of polymorphism of microsatellites has been used for a variety of purposes such as positional cloning of genes associated with diseases, forensic medicine, and phylogenetic studies. The discovery that microsatellites are associated with human diseases, not only as markers of risk but also directly in disease pathogenesis, has triggered a renewed interest in understanding the mechanism of their instability. In this work we have investigated the role of DNA replication, long patch mismatch repair, and transcription on the genetic instability of all possible combinations of dinucleotide repeats in Escherichia coli. We show that the (GpC) and (ApT) self-complementary sequence repeats are the most unstable and that the mode of replication plays an important role in their instability. We also found that long patch mismatch repair is involved in avoiding both short deletion and expansion events and also in instabilities resulting from the processing of bulges of 6 to 8 bp for the (GpT/ApC)- and (ApG/CpT)- containing repeats. For each dinucleotide sequence repeat, we propose models for instability that involve the possible participation of unusual secondary structures.

摘要

微卫星的高度多态性已被用于多种目的,如与疾病相关基因的定位克隆、法医学和系统发育研究。微卫星与人类疾病相关的发现,不仅作为风险标志物,而且直接参与疾病发病机制,引发了人们对理解其不稳定性机制的新兴趣。在这项工作中,我们研究了DNA复制、长片段错配修复和转录对大肠杆菌中所有可能的二核苷酸重复组合的遗传不稳定性的作用。我们表明,(GpC)和(ApT)自我互补序列重复是最不稳定的,并且复制模式在其不稳定性中起重要作用。我们还发现,长片段错配修复参与避免短缺失和扩增事件,以及由含(GpT/ApC)和(ApG/CpT)重复序列的6至8个碱基对凸起处理导致的不稳定性。对于每个二核苷酸序列重复,我们提出了涉及异常二级结构可能参与的不稳定性模型。

相似文献

1
Mechanisms of dinucleotide repeat instability in Escherichia coli.
Genetics. 2000 Feb;154(2):533-42. doi: 10.1093/genetics/154.2.533.
2
The instability of (GpT)n and (ApC)n microsatellites induced by formaldehyde in Escherichia coli.
Mutagenesis. 2007 Sep;22(5):353-7. doi: 10.1093/mutage/gem023. Epub 2007 Jul 14.
3
Two distinct models account for short and long deletions within sequence repeats in Escherichia coli.
J Bacteriol. 1997 Oct;179(20):6512-7. doi: 10.1128/jb.179.20.6512-6517.1997.
4
Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases.
Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11019-23. doi: 10.1073/pnas.92.24.11019.
5
Two opposing effects of mismatch repair on CTG repeat instability in Escherichia coli.
Mol Microbiol. 2000 Jan;35(2):463-71. doi: 10.1046/j.1365-2958.2000.01727.x.
10
Involvement of the nucleotide excision repair protein UvrA in instability of CAG*CTG repeat sequences in Escherichia coli.
J Biol Chem. 2001 Aug 17;276(33):30878-84. doi: 10.1074/jbc.M104697200. Epub 2001 Jun 18.

引用本文的文献

2
mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances.
Nat Commun. 2018 Oct 18;9(1):4328. doi: 10.1038/s41467-018-06792-z.
4
Remarkable stability of an instability-prone lentiviral vector plasmid in Escherichia coli Stbl3.
3 Biotech. 2013 Feb;3(1):61-70. doi: 10.1007/s13205-012-0070-8. Epub 2012 Jul 27.
7
Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes.
Cancer Immunol Immunother. 2012 Sep;61(9):1359-71. doi: 10.1007/s00262-012-1321-6. Epub 2012 Jul 26.
8
Human postmeiotic segregation 2 exhibits biased repair at tetranucleotide microsatellite sequences.
Cancer Res. 2009 Feb 1;69(3):1143-9. doi: 10.1158/0008-5472.CAN-08-3499. Epub 2009 Jan 20.
9
The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex.
Genetics. 2008 Apr;178(4):2113-21. doi: 10.1534/genetics.107.081927.
10
Advances in mechanisms of genetic instability related to hereditary neurological diseases.
Nucleic Acids Res. 2005 Jul 8;33(12):3785-98. doi: 10.1093/nar/gki697. Print 2005.

本文引用的文献

1
Replication errors: cha(lle)nging the genome.
EMBO J. 1998 Nov 16;17(22):6427-36. doi: 10.1093/emboj/17.22.6427.
2
Instabilities of triplet repeats: factors and mechanisms.
Results Probl Cell Differ. 1998;21:133-65. doi: 10.1007/978-3-540-69680-3_4.
3
Origin of multiple mutations in human cancers.
Drug Metab Rev. 1998 May;30(2):285-304. doi: 10.3109/03602539808996313.
4
Cancer cells exhibit a mutator phenotype.
Adv Cancer Res. 1998;72:25-56. doi: 10.1016/s0065-230x(08)60699-5.
6
Repeat expansion--all in a flap?
Nat Genet. 1997 Jun;16(2):116-8. doi: 10.1038/ng0697-116.
7
Genetic control of microsatellite stability.
Mutat Res. 1997 Jan 31;383(1):61-70. doi: 10.1016/s0921-8777(96)00046-8.
8
Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair.
J Biol Chem. 1996 Nov 8;271(45):27987-90. doi: 10.1074/jbc.271.45.27987.
9
Destabilization of simple repetitive DNA sequences by transcription in yeast.
Genetics. 1996 Jun;143(2):713-21. doi: 10.1093/genetics/143.2.713.
10
Instability of repeated dinucleotides in bacteriophage T7 genomes.
Mutat Res. 1996 Jul 5;354(1):113-27. doi: 10.1016/0027-5107(96)00049-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验