Tang L, Fu H, McDaniel R
Incorporated, KOSAN Biosciences, Hayward, CA 94545, USA. tang@kosan. com.
Chem Biol. 2000 Feb;7(2):77-84. doi: 10.1016/s1074-5521(00)00073-9.
Recently developed tools for the genetic manipulation of modular polyketide synthases (PKSs) have advanced the development of combinatorial biosynthesis technologies for drug discovery. Although many of the current techniques involve engineering individual domains or modules of the PKS, few experiments have addressed the ability to combine entire protein subunits from different modular PKSs to create hybrid polyketide pathways. We investigated this possibility by in vivo assembly of heterologous PKS complexes using natural and altered subunits from related macrolide PKSs.
The pikAI and pikAII genes encoding subunits 1 and 2 (modules 1-4) of the picromycin PKS (PikPKS) and the eryAIII gene encoding subunit 3 (modules 5-6) of the 6-deoxyerythronolide B synthase (DEBS) were cloned in two compatible Streptomyces expression vectors. A strain of Streptomyces lividans co-transformed with the two vectors produced the hybrid macrolactone 3-hydroxynarbonolide. Co-expression of the same pik genes with the gene for subunit 3 of the oleandomycin PKS (OlePKS) was also successful. A series of hybrid polyketide pathways was then constructed by combining PikPKS subunits 1 and 2 with modified DEBS3 subunits containing engineered domains in modules 5 or 6. We also report the effect of junction location in a set of DEBS-PikPKS fusions.
We show that natural as well as engineered protein subunits from heterologous modular PKSs can be functionally assembled to create hybrid polyketide pathways. This work represents a new strategy that complements earlier domain engineering approaches for combinatorial biosynthesis in which complete modules or PKS protein subunits, in addition to individual enzymatic domains, are used as building blocks for PKS engineering.
最近开发的用于模块化聚酮合酶(PKS)基因操作的工具推动了用于药物发现的组合生物合成技术的发展。尽管当前许多技术涉及对PKS的单个结构域或模块进行工程改造,但很少有实验研究将来自不同模块化PKS的完整蛋白质亚基组合以创建杂合聚酮途径的能力。我们通过使用来自相关大环内酯PKS的天然和改造亚基在体内组装异源PKS复合物来研究这种可能性。
编码苦霉素PKS(PikPKS)的亚基1和2(模块1 - 4)的pikAI和pikAII基因以及编码6 - 脱氧红霉内酯B合酶(DEBS)的亚基3(模块5 - 6)的eryAIII基因被克隆到两个兼容的链霉菌表达载体中。用这两个载体共转化的淡紫链霉菌菌株产生了杂合大环内酯3 - 羟基纳波内酯。相同的pik基因与竹桃霉素PKS(OlePKS)的亚基3基因共表达也取得了成功。然后通过将PikPKS亚基1和2与在模块5或6中含有工程化结构域的修饰DEBS3亚基组合,构建了一系列杂合聚酮途径。我们还报告了一组DEBS - PikPKS融合体中连接位置的影响。
我们表明,来自异源模块化PKS的天然以及工程化蛋白质亚基可以在功能上组装以创建杂合聚酮途径。这项工作代表了一种新策略,它补充了早期用于组合生物合成的结构域工程方法,在该方法中,除了单个酶结构域外,完整的模块或PKS蛋白质亚基也被用作PKS工程的构建模块。