McDaniel R, Kao C M, Hwang S J, Khosla C
KOSAN Biosciences, Inc., Burlingame, CA 94010, USA.
Chem Biol. 1997 Sep;4(9):667-74. doi: 10.1016/s1074-5521(97)90222-2.
Modular polyketide synthases (PKSs) are very large multifunctional enzyme complexes that synthesize a number of medicinally important natural products. The modular arrangement of active sites has made these enzyme systems amenable to combinatorial manipulation for the biosynthesis of novel polyketides. Here, we investigate the involvement of subunit interactions in hybrid and artificially linked PKSs with several series of intermodular and intramodular fusions using the erythromycin (6-deoxyerythronolide B synthase; DEBS) and rapamycin (RAPS) PKSs.
Several two-module and three-module derivatives of DEBS were constructed by fusing module 6 to either module 2 or module 3 at varying junctions. Polyketide production by these intramodular fusions indicated that the core set of active sites remained functional in these hybrid modules, although the ketoreductase domain of module 6 was unable to recognize unnatural triketide and tetraketide substrates. Artificial trimodular PKS subunits were also engineered by covalently linking modules 2 and 3 of DEBS, thereby demonstrating the feasibility of constructing single-chain PKSs. Finally, a series of fusions containing DEBS and RAPS domains in module 2 of an engineered trimodular PKS revealed the structural and functional tolerance for hybrid modules created from distinct PKS gene clusters.
The general success of the intermodular and intramodular fusions described here demonstrates significant structural tolerance among PKS modules and subunits and suggests that substrate specificity, rather than protein-protein interactions, is the primary determinant of molecular recognition features of PKSs. Furthermore, the ability to artificially link modules may considerably simplify the heterologous expression of modular PKSs in higher eukaryotic systems.
模块化聚酮合酶(PKSs)是非常大的多功能酶复合物,可合成许多具有重要药用价值的天然产物。活性位点的模块化排列使这些酶系统适合于通过组合操作来生物合成新型聚酮化合物。在此,我们使用红霉素(6-脱氧红霉内酯B合酶;DEBS)和雷帕霉素(RAPS)聚酮合酶,通过一系列模块间和模块内融合,研究亚基相互作用在杂合和人工连接的聚酮合酶中的作用。
通过在不同连接点将模块6与模块2或模块3融合,构建了几种DEBS的双模块和三模块衍生物。这些模块内融合产生的聚酮化合物表明,尽管模块6的酮还原酶结构域无法识别非天然的三酮和四酮底物,但活性位点的核心集在这些杂合模块中仍保持功能。还通过共价连接DEBS的模块2和3设计了人工三模块聚酮合酶亚基,从而证明了构建单链聚酮合酶的可行性。最后,在一个工程化三模块聚酮合酶的模块2中包含DEBS和RAPS结构域的一系列融合物,揭示了由不同聚酮合酶基因簇产生的杂合模块的结构和功能耐受性。
本文所述的模块间和模块内融合的总体成功证明了聚酮合酶模块和亚基之间具有显著的结构耐受性,并表明底物特异性而非蛋白质-蛋白质相互作用是聚酮合酶分子识别特征的主要决定因素。此外,人工连接模块的能力可能会大大简化模块化聚酮合酶在高等真核系统中的异源表达。