Tejero R, Monleon D, Celda B, Powers R, Montelione G T
Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854-5638, USA.
J Biomol NMR. 1999 Nov;15(3):251-64. doi: 10.1023/a:1008331216581.
A new computer program, HYPER, has been developed for automated analysis of protein dihedral angle values and C beta H2 stereospecific assignments from NMR data. HYPER uses a hierarchical grid-search algorithm to determine allowed values of phi, psi, and chi 1 dihedral angles and C beta H2 stereospecific assignments based on a set of NMR-derived distance and/or scalar-coupling constraints. Dihedral-angle constraints are valuable for restricting conformational space and improving convergence in three-dimensional structure calculations. HYPER computes the set of phi, psi, and chi 1 dihedral angles and C beta H2 stereospecific assignments that are consistent with up to nine intraresidue and sequential distance bounds, two pairs of relative distance bounds, thirteen homo- and heteronuclear scalar coupling bounds, and two pairs of relative scalar coupling constant bounds. The program is designed to be very flexible, and provides for simple user modification of Karplus equations and standard polypeptide geometries, allowing it to accommodate recent and future improved calibrations of Karplus curves. The C code has been optimized to execute rapidly (0.3-1.5 CPU-sec residue-1 using a 5 degrees grid) on Silicon Graphics R8000, R10000 and Intel Pentium CPUs, making it useful for interactive evaluation of inconsistent experimental constraints. The HYPER program has been tested for internal consistency and reliability using both simulated and real protein NMR data sets.
已开发出一种名为HYPER的新计算机程序,用于根据核磁共振(NMR)数据自动分析蛋白质二面角值和CβH2立体专一性归属。HYPER使用分层网格搜索算法,基于一组NMR衍生的距离和/或标量耦合约束,来确定允许的φ、ψ和χ1二面角值以及CβH2立体专一性归属。二面角约束对于限制构象空间和改善三维结构计算中的收敛性很有价值。HYPER计算出与多达九个残基内和序列距离界限、两对相对距离界限、十三个同核和异核标量耦合界限以及两对相对标量耦合常数界限相一致的φ、ψ和χ1二面角集以及CβH2立体专一性归属。该程序设计得非常灵活,并允许用户简单修改Karplus方程和标准多肽几何结构,使其能够适应Karplus曲线最近和未来改进的校准。C代码已针对在Silicon Graphics R8000、R10000和英特尔奔腾CPU上快速执行进行了优化(使用5度网格时为0.3 - 1.5 CPU秒/残基),这使其对于交互式评估不一致的实验约束很有用。HYPER程序已使用模拟和真实蛋白质NMR数据集进行了内部一致性和可靠性测试。