Suppr超能文献

美国国立综合医学科学研究所蛋白质结构计划带来的蛋白质核磁共振技术进展:对药物发现的影响。

Advances in protein NMR provided by the NIGMS Protein Structure Initiative: impact on drug discovery.

作者信息

Montelione Gaetano T, Szyperski Thomas

机构信息

Rutgers University, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5638, USA.

出版信息

Curr Opin Drug Discov Devel. 2010 May;13(3):335-49.

Abstract

Rational drug design relies on the 3D structures of biological macromolecules, with a particular emphasis on proteins. The structural genomics-based high-throughput structure determination platforms established by the Protein Structure Initiative (PSI) of the National Institute of General Medical Science (NIGMS) of the NIH are uniquely suited to provide these structures. NMR plays a critical role in structure determination because many important protein targets do not form the single crystals required for X-ray diffraction. NMR can provide valuable structural and dynamic information on proteins and their drug complexes that cannot be obtained with X-ray crystallography. This review discusses recent advances in NMR that have been driven by structural genomics projects. These advances suggest that the future discovery and design of drugs can increasingly rely on protocols using NMR approaches for the rapid and accurate determination of structures.

摘要

合理药物设计依赖于生物大分子的三维结构,尤其侧重于蛋白质。美国国立卫生研究院(NIH)国立综合医学科学研究所(NIGMS)的蛋白质结构计划(PSI)建立的基于结构基因组学的高通量结构测定平台特别适合提供这些结构。核磁共振(NMR)在结构测定中起着关键作用,因为许多重要的蛋白质靶点不会形成X射线衍射所需的单晶。NMR可以提供关于蛋白质及其药物复合物的有价值的结构和动力学信息,而这些信息是X射线晶体学无法获得的。本综述讨论了由结构基因组学项目推动的NMR的最新进展。这些进展表明,未来药物的发现和设计可以越来越多地依赖于使用NMR方法快速准确测定结构的方案。

相似文献

3
A community resource of experimental data for NMR / X-ray crystal structure pairs.
Protein Sci. 2016 Jan;25(1):30-45. doi: 10.1002/pro.2774. Epub 2015 Sep 22.
5
Preparation of protein samples for NMR structure, function, and small-molecule screening studies.
Methods Enzymol. 2011;493:21-60. doi: 10.1016/B978-0-12-381274-2.00002-9.
6
NMR in structure-based drug design.
Essays Biochem. 2017 Nov 8;61(5):485-493. doi: 10.1042/EBC20170037.
7
Residual dipolar couplings: synergy between NMR and structural genomics.
J Biomol NMR. 2002 Jan;22(1):1-8. doi: 10.1023/a:1013801714041.
8
NMR spectroscopy: the swiss army knife of drug discovery.
J Biomol NMR. 2020 Nov;74(10-11):509-519. doi: 10.1007/s10858-020-00330-0. Epub 2020 Jul 2.
10
Applications of NMR to structure-based drug design in structural genomics.
J Struct Funct Genomics. 2002;2(2):113-23. doi: 10.1023/a:1020445506369.

引用本文的文献

1
AlphaFold Models of Small Proteins Rival the Accuracy of Solution NMR Structures.
Front Mol Biosci. 2022 Jun 13;9:877000. doi: 10.3389/fmolb.2022.877000. eCollection 2022.
2
Spatially selective heteronuclear multiple-quantum coherence spectroscopy for biomolecular NMR studies.
Chemphyschem. 2014 Jun 23;15(9):1872-9. doi: 10.1002/cphc.201301232. Epub 2014 Apr 30.
3
Approaches to automated protein crystal harvesting.
Acta Crystallogr F Struct Biol Commun. 2014 Feb;70(Pt 2):133-55. doi: 10.1107/S2053230X14000387. Epub 2014 Jan 28.
4
Exploring chemical space for drug discovery using the chemical universe database.
ACS Chem Neurosci. 2012 Sep 19;3(9):649-57. doi: 10.1021/cn3000422. Epub 2012 Apr 25.
5
The Protein Structure Initiative: achievements and visions for the future.
F1000 Biol Rep. 2012;4:7. doi: 10.3410/B4-7. Epub 2012 Apr 2.
6
First experiences with semi-autonomous robotic harvesting of protein crystals.
J Struct Funct Genomics. 2011 Jul;12(2):77-82. doi: 10.1007/s10969-011-9103-5. Epub 2011 Mar 23.

本文引用的文献

1
NMR structure determination for larger proteins using backbone-only data.
Science. 2010 Feb 19;327(5968):1014-8. doi: 10.1126/science.1183649. Epub 2010 Feb 4.
2
Accurate automated protein NMR structure determination using unassigned NOESY data.
J Am Chem Soc. 2010 Jan 13;132(1):202-7. doi: 10.1021/ja905934c.
3
A microscale protein NMR sample screening pipeline.
J Biomol NMR. 2010 Jan;46(1):11-22. doi: 10.1007/s10858-009-9386-z. Epub 2009 Nov 14.
4
Bacterial pleckstrin homology domains: a prokaryotic origin for the PH domain.
J Mol Biol. 2010 Feb 12;396(1):31-46. doi: 10.1016/j.jmb.2009.11.006. Epub 2009 Nov 10.
5
Simultaneous prediction of protein folding and docking at high resolution.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18978-83. doi: 10.1073/pnas.0904407106. Epub 2009 Oct 28.
6
Production of membrane proteins for NMR studies using the condensed single protein (cSPP) production system.
J Struct Funct Genomics. 2009 Dec;10(4):281-9. doi: 10.1007/s10969-009-9072-0. Epub 2009 Oct 24.
7
The E. coli single protein production system for production and structural analysis of membrane proteins.
J Struct Funct Genomics. 2010 Mar;11(1):81-4. doi: 10.1007/s10969-009-9070-2. Epub 2009 Oct 15.
8
Quantum-mechanics-derived 13Calpha chemical shift server (CheShift) for protein structure validation.
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16972-7. doi: 10.1073/pnas.0908833106. Epub 2009 Sep 8.
9
Exploration of uncharted regions of the protein universe.
PLoS Biol. 2009 Sep;7(9):e1000205. doi: 10.1371/journal.pbio.1000205. Epub 2009 Sep 29.
10
Critical assessment of methods of protein structure prediction - Round VIII.
Proteins. 2009;77 Suppl 9:1-4. doi: 10.1002/prot.22589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验