Suppr超能文献

束缚态球形红细菌对光照强度变化的响应动力学。

Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity.

作者信息

Berry R M, Armitage J P

机构信息

Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.

出版信息

Biophys J. 2000 Mar;78(3):1207-15. doi: 10.1016/S0006-3495(00)76678-1.

Abstract

Rhodobacter sphaeroides can swim toward a wide range of attractants (a process known as taxis), propelled by a single rotating flagellum. The reversals of motor direction that cause tumbles in Eschericia coli taxis are replaced by brief motor stops, and taxis is controlled by a complex sensory system with multiple homologues of the E. coli sensory proteins. We tethered photosynthetically grown cells of R. sphaeroides by their flagella and measured the response of the flagellar motor to changes in light intensity. The unstimulated bias (probability of not being stopped) was significantly larger than the bias of tethered E. coli but similar to the probability of not tumbling in swimming E. coli. Otherwise, the step and impulse responses were the same as those of tethered E. coli to chemical attractants. This indicates that the single motor and multiple sensory signaling pathways in R. sphaeroides generate the same swimming response as several motors and a single pathway in E. coli, and that the response of the single motor is directly observable in the swimming pattern. Photo-responses were larger in the presence of cyanide or the uncoupler carbonyl cyanide 4-trifluoromethoxyphenylhydrazone (FCCP), consistent with the photo-response being detected via changes in the rate of electron transport.

摘要

球形红杆菌能够朝着多种引诱剂游动(这一过程称为趋化性),由单一旋转鞭毛推动。在大肠杆菌趋化性中导致翻滚的马达方向反转,在球形红杆菌中被短暂的马达停顿所取代,并且趋化性由一个复杂的感觉系统控制,该系统具有多种大肠杆菌感觉蛋白的同源物。我们通过鞭毛将光合生长的球形红杆菌细胞固定,并测量鞭毛马达对光强度变化的反应。未受刺激时的偏向(不停顿的概率)显著大于固定的大肠杆菌的偏向,但与游动的大肠杆菌中不翻滚的概率相似。否则,阶跃响应和脉冲响应与固定的大肠杆菌对化学引诱剂的响应相同。这表明球形红杆菌中的单个马达和多个感觉信号通路产生的游动反应与大肠杆菌中的几个马达和单个通路相同,并且单个马达的反应可以在游动模式中直接观察到。在存在氰化物或解偶联剂羰基氰化物4-三氟甲氧基苯腙(FCCP)的情况下,光反应更大,这与通过电子传递速率的变化检测到光反应一致。

相似文献

1
Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity.
Biophys J. 2000 Mar;78(3):1207-15. doi: 10.1016/S0006-3495(00)76678-1.
3
Rotation-induced polymorphic transitions in bacterial flagella.
Phys Rev Lett. 2013 Apr 12;110(15):158104. doi: 10.1103/PhysRevLett.110.158104. Epub 2013 Apr 9.
5
The behavioural response of anaerobic Rhodobacter sphaeroides to temporal stimuli.
Microbiology (Reading). 1996 Mar;142 ( Pt 3):593-599. doi: 10.1099/13500872-142-3-593.
6
The Rhodobacter sphaeroides flagellar motor is a variable-speed rotor.
FEBS Lett. 1997 Jun 2;409(1):37-40. doi: 10.1016/s0014-5793(97)00473-0.
7
Electron transport-dependent taxis in Rhodobacter sphaeroides.
J Bacteriol. 1995 Oct;177(20):5853-9. doi: 10.1128/jb.177.20.5853-5859.1995.
8
Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides.
J Bacteriol. 1997 Nov;179(21):6764-8. doi: 10.1128/jb.179.21.6764-6768.1997.
9
Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides.
J Bacteriol. 1987 Feb;169(2):514-8. doi: 10.1128/jb.169.2.514-518.1987.

引用本文的文献

1
Swimming Using a Unidirectionally Rotating, Single Stopping Flagellum in the Alpha Proteobacterium .
Front Microbiol. 2022 Jun 1;13:893524. doi: 10.3389/fmicb.2022.893524. eCollection 2022.
2
Mechanism of Signalling and Adaptation through the Cytoplasmic Chemoreceptor Cluster.
Int J Mol Sci. 2019 Oct 14;20(20):5095. doi: 10.3390/ijms20205095.
3
Phototaxis of synthetic microswimmers in optical landscapes.
Nat Commun. 2016 Sep 30;7:12828. doi: 10.1038/ncomms12828.
4
Novel methods for analysing bacterial tracks reveal persistence in Rhodobacter sphaeroides.
PLoS Comput Biol. 2013 Oct;9(10):e1003276. doi: 10.1371/journal.pcbi.1003276. Epub 2013 Oct 24.
7
Signal processing in complex chemotaxis pathways.
Nat Rev Microbiol. 2011 Mar;9(3):153-65. doi: 10.1038/nrmicro2505. Epub 2011 Feb 1.
8
Modeling chemotaxis reveals the role of reversed phosphotransfer and a bi-functional kinase-phosphatase.
PLoS Comput Biol. 2010 Aug 19;6(8):e1000896. doi: 10.1371/journal.pcbi.1000896.
9
A bifunctional kinase-phosphatase in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18531-6. doi: 10.1073/pnas.0808010105. Epub 2008 Nov 19.
10
The thermal impulse response of Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5373-7. doi: 10.1073/pnas.0709903105. Epub 2008 Apr 2.

本文引用的文献

1
Bacterial tactic responses.
Adv Microb Physiol. 1999;41:229-89. doi: 10.1016/s0065-2911(08)60168-x.
3
In search of higher energy: metabolism-dependent behaviour in bacteria.
Mol Microbiol. 1998 May;28(4):683-90. doi: 10.1046/j.1365-2958.1998.00835.x.
4
Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria.
Biophys J. 1998 May;74(5):2272-7. doi: 10.1016/S0006-3495(98)77936-6.
5
Metabolism is required for chemotaxis to sugars in Rhodobacter sphaeroides.
Microbiology (Reading). 1998 Jan;144 ( Pt 1):229-239. doi: 10.1099/00221287-144-1-229.
6
Evidence for two chemosensory pathways in Rhodobacter sphaeroides.
Mol Microbiol. 1997 Dec;26(5):1083-96. doi: 10.1046/j.1365-2958.1997.6502022.x.
7
Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme?
Microbiology (Reading). 1997 Dec;143 ( Pt 12):3671-3682. doi: 10.1099/00221287-143-12-3671.
8
Control of direction of flagellar rotation in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):201-6. doi: 10.1073/pnas.95.1.201.
9
Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport.
J Bacteriol. 1997 Jan;179(1):24-30. doi: 10.1128/jb.179.1.24-30.1997.
10
Temperature-induced switching of the bacterial flagellar motor.
Biophys J. 1996 Oct;71(4):2227-33. doi: 10.1016/S0006-3495(96)79425-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验