Lozano Celia, Ten Hagen Borge, Löwen Hartmut, Bechinger Clemens
2. Physikalisches Institut, Universität Stuttgart, D-70569 Stuttgart, Germany.
Max-Planck-Institut für Intelligente Systeme, D-70569 Stuttgart, Germany.
Nat Commun. 2016 Sep 30;7:12828. doi: 10.1038/ncomms12828.
Many microorganisms, with phytoplankton and zooplankton as prominent examples, display phototactic behaviour, that is, the ability to perform directed motion within a light gradient. Here we experimentally demonstrate that sensing of light gradients can also be achieved in a system of synthetic photo-activated microparticles being exposed to an inhomogeneous laser field. We observe a strong orientational response of the particles because of diffusiophoretic torques, which in combination with an intensity-dependent particle motility eventually leads to phototaxis. Since the aligning torques saturate at high gradients, a strongly rectified particle motion is found even in periodic asymmetric intensity landscapes. Our results are in excellent agreement with numerical simulations of a minimal model and should similarly apply to other particle propulsion mechanisms. Because light fields can be easily adjusted in space and time, this also allows to extend our approach to dynamical environments.
许多微生物,以浮游植物和浮游动物为突出例子,表现出趋光行为,即能够在光梯度内进行定向运动。在这里,我们通过实验证明,在暴露于非均匀激光场的合成光激活微粒系统中,也可以实现对光梯度的感知。由于扩散电泳扭矩,我们观察到微粒有强烈的取向响应,这种扭矩与强度依赖的微粒运动性相结合最终导致趋光性。由于在高梯度下排列扭矩会饱和,即使在周期性不对称强度分布中也能发现强烈整流的微粒运动。我们的结果与一个最小模型的数值模拟非常吻合,并且应该同样适用于其他微粒推进机制。因为光场可以很容易地在空间和时间上进行调节,这也使得我们能够将方法扩展到动态环境中。