Kempf M J, McBride M J
Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
J Bacteriol. 2000 Mar;182(6):1671-9. doi: 10.1128/JB.182.6.1671-1679.2000.
Flavobacterium johnsoniae is a gram-negative bacterium that exhibits gliding motility. To determine the mechanism of flavobacterial gliding motility, we isolated 33 nongliding mutants by Tn4351 mutagenesis. Seventeen of these mutants exhibited filamentous cell morphology. The region of DNA surrounding the transposon insertion in the filamentous mutant CJ101-207 was cloned and sequenced. The transposon was inserted in a gene that was similar to Escherichia coli ftsX. Two of the remaining 16 filamentous mutants also carried insertions in ftsX. Introduction of the wild-type F. johnsoniae ftsX gene restored motility and normal cell morphology to each of the three ftsX mutants. CJ101-207 appears to be blocked at a late stage of cell division, since the filaments produced cross walls but cells failed to separate. In E. coli, FtsX is thought to function with FtsE in translocating proteins involved in potassium transport, and perhaps proteins involved in cell division, into the cytoplasmic membrane. Mutations in F. johnsoniae ftsX may prevent translocation of proteins involved in cell division and proteins involved in gliding motility into the cytoplasmic membrane, thus resulting in defects in both processes. Alternatively, the loss of gliding motility may be an indirect result of the defect in cell division. The inability to complete cell division may alter the cell architecture and disrupt gliding motility by preventing the synthesis, assembly, or functioning of the motility apparatus.
琼氏黄杆菌是一种具有滑行运动能力的革兰氏阴性细菌。为了确定黄杆菌滑行运动的机制,我们通过Tn4351诱变分离出了33个非滑行突变体。其中17个突变体呈现出丝状细胞形态。对丝状突变体CJ101 - 207中转座子插入位点周围的DNA区域进行了克隆和测序。转座子插入到了一个与大肠杆菌ftsX相似的基因中。其余16个丝状突变体中的两个在ftsX中也有插入。导入野生型琼氏黄杆菌ftsX基因可使三个ftsX突变体中的每一个恢复运动能力和正常细胞形态。CJ101 - 207似乎在细胞分裂的后期被阻断,因为形成的丝状体产生了横壁,但细胞未能分离。在大肠杆菌中,FtsX被认为与FtsE共同作用,将参与钾转运的蛋白质以及可能参与细胞分裂的蛋白质转运到细胞质膜中。琼氏黄杆菌ftsX中的突变可能会阻止参与细胞分裂的蛋白质和参与滑行运动的蛋白质转运到细胞质膜中,从而导致这两个过程出现缺陷。或者,滑行运动能力的丧失可能是细胞分裂缺陷的间接结果。无法完成细胞分裂可能会改变细胞结构,并通过阻止运动装置的合成、组装或功能来破坏滑行运动。