Keating T A, Suo Z, Ehmann D E, Walsh C T
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
Biochemistry. 2000 Mar 7;39(9):2297-306. doi: 10.1021/bi992341z.
The adenylation (A) domain of the Yersinia pestis nonribosomal peptide synthetase that biosynthesizes the siderophore yersiniabactin (Ybt) activates three molecules of L-cysteine and covalently aminoacylates the phosphopantetheinyl (P-pant) thiols on three peptidyl carrier protein (PCP) domains embedded in the two synthetase subunits, two in cis (PCP1, PCP2) in subunit HMWP2 and one in trans (PCP3) in subunit HMWP1. This two-step process of activation and loading by the A domain is analogous to the operation of the aminoacyl-tRNA synthetases in ribosomal peptide synthesis. Adenylation domain specificity for the first step of reversible aminoacyl adenylate formation was assessed with the amino acid-dependent [(32)P]-PP(i)-ATP exchange assay to show that S-2-aminobutyrate and beta-chloro-L-alanine were alternate substrates. The second step of A domain catalysis, capture of the bound aminoacyl adenylate by the P-pant-SH of the PCP domains, was assayed both by catalytic release of PP(i) and by covalent aminoacylation of radiolabeled substrates on either the PCP1 fragment of HMWP2 or the PCP3-thioesterase double domain fragment of HMWP1. There was little selectivity for capture of each of the three adenylates by PCP3 in the second step, arguing against any hydrolytic proofreading of incorrect substrates by the A domain. The holo-PCP3 domain accelerated PP(i) release and catalytic turnover by 100-200-fold over the leak rate (<1 min(-1)) of aminoacyl adenylates into solution while PCP1 in trans had only about a 5-fold effect. Free pantetheine could capture cysteinyl adenylate with a 25-50-fold increase in k(cat) while CoA was 10-fold less effective. The K(m) of free pantetheine (30-50 mM) was 3 orders of magnitude larger than that of PCP3-TE (10-25 microM), indicating a net 10(4) greater catalytic efficiency for transfer to the P-pant arm of PCP3 by the Ybt synthetase A domain, relative to P-pant alone.
鼠疫耶尔森菌非核糖体肽合成酶的腺苷化(A)结构域负责生物合成铁载体耶尔森菌素(Ybt),它激活三分子的L-半胱氨酸,并将其共价氨基酰化到嵌入两个合成酶亚基中的三个肽基载体蛋白(PCP)结构域上的磷酸泛酰巯基(P-泛)硫醇上,其中两个在顺式(PCP1、PCP2)位于HMWP2亚基中,一个在反式(PCP3)位于HMWP1亚基中。A结构域的这种激活和负载的两步过程类似于核糖体肽合成中氨酰-tRNA合成酶的操作。通过氨基酸依赖性的[(32)P]-PP(i)-ATP交换测定评估了可逆氨酰腺苷酸形成第一步中腺苷化结构域的特异性,结果表明S-2-氨基丁酸酯和β-氯-L-丙氨酸是替代底物。A结构域催化的第二步,即PCP结构域的P-泛-SH捕获结合的氨酰腺苷酸,通过PP(i)的催化释放以及通过对HMWP2的PCP1片段或HMWP1的PCP3-硫酯酶双结构域片段上的放射性标记底物进行共价氨基酰化来测定。在第二步中,PCP3对三种腺苷酸中每一种的捕获几乎没有选择性,这表明A结构域不会对错误底物进行任何水解校对。全酶PCP3结构域使PP(i)释放和催化周转比氨酰腺苷酸泄漏到溶液中的速率(<1分钟(-1))加快100 - 200倍,而反式的PCP1只有约5倍的效果。游离泛酰巯基乙胺可以捕获半胱氨酰腺苷酸,其催化常数(k(cat))增加25 - 50倍,而辅酶A的效果则低10倍。游离泛酰巯基乙胺的米氏常数(K(m))(30 - 50 mM)比PCP3-硫酯酶(10 - 25 microM)大3个数量级,这表明相对于单独的P-泛,Ybt合成酶A结构域将其转移到PCP3的P-泛臂上的催化效率净提高了10(4)倍。