Suppr超能文献

神经网络在鉴别胃良性细胞与恶性细胞中的应用。

Neural network application in the discrimination of benign from malignant gastric cells.

作者信息

Karakitsos P, Pouliakis A, Koutroumbas K, Stergiou E B, Tzivras M, Archimandritis A, Liossi A I

机构信息

Department of Cytology, St. Olga Hospital, Greece.

出版信息

Anal Quant Cytol Histol. 2000 Feb;22(1):63-9.

Abstract

OBJECTIVE

To investigate the potential value of morphometry and neural networks for the discrimination of benign from malignant gastric lesions.

STUDY DESIGN

One thousand cells from 19 cases of cancer, 19 cases of gastritis and 56 cases of ulcer were selected as a training set, and an additional 4,000 cells from the same cases of cancer, gastritis and ulcer were used as a test set. Images of routinely processed gastric smears stained by the Papanicolaou technique were analyzed by a custom-made image analysis system.

RESULTS

Application of the neural network gave correct classification in 96% of benign cells and 89% of malignant cells.

CONCLUSION

The results indicate that the use of neural networks and image morphometry may offer useful information concerning the potential of malignancy in gastric cells.

摘要

目的

探讨形态计量学和神经网络在鉴别胃良性病变与恶性病变方面的潜在价值。

研究设计

选取19例癌症、19例胃炎和56例溃疡患者的1000个细胞作为训练集,另外从相同的癌症、胃炎和溃疡病例中选取4000个细胞作为测试集。采用巴氏染色法对常规处理的胃涂片进行图像分析,由定制的图像分析系统完成。

结果

神经网络应用于良性细胞时分类正确率为96%,应用于恶性细胞时分类正确率为89%。

结论

结果表明,神经网络和图像形态计量学的应用可能为胃细胞恶性潜能提供有用信息。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验