Suppr超能文献

学习矢量量化在乳腺病变分类中的应用。

Application of the learning vector quantizer to the classification of breast lesions.

作者信息

Markopoulos C, Karakitsos P, Botsoli-Stergiou E, Pouliakis A, Ioakim-Liossi A, Kyrkou K, Gogas J

机构信息

2nd Propedeutic Surgical Clinic, Athens University Medical School, Greece.

出版信息

Anal Quant Cytol Histol. 1997 Oct;19(5):453-60.

PMID:9349906
Abstract

OBJECTIVE

To investigate the potential of the learning vector quantization (LVQ) neural network for the discrimination of benign from malignant breast lesions.

STUDY DESIGN

Using a custom image analysis system on Giemsa-stained smears, 25 parameters describing the size, shape and texture of the cell nucleus were measured. Three thousand nuclei from a total of 9,356 were selected as a training set for the neural network, and the whole data set was used for testing. An additional 238 cells from 16 cases without final cytologic diagnoses were evaluated by the system. The total number of cells (9,594) was collected from 100 patients (68 carcinomas and 32 benign lesions).

RESULTS

Cytologic examination of the cases gave two false positive and two false negative results. However, in eight cases of ductal breast carcinoma and in eight cases of benign lesions, histologic confirmation was necessary in order to confirm the cytologic diagnosis. Application of the LVQ permitted correct classification of 87.41% of the cells. Classification at the patient level by using a hypothesis test for proportion with a hypothesis value equal to 50% permitted the correct diagnosis in 98% of patients.

CONCLUSION

These results indicate that the use of neural networks combined with image morphometry and statistical techniques may offer useful information about the potential for malignancy, improving the diagnostic accuracy of fine needle aspiration of breast lesions.

摘要

目的

探讨学习向量量化(LVQ)神经网络鉴别乳腺良恶性病变的潜力。

研究设计

使用定制的图像分析系统对吉姆萨染色涂片进行分析,测量描述细胞核大小、形状和纹理的25个参数。从总共9356个细胞核中选取3000个作为神经网络的训练集,整个数据集用于测试。该系统还对16例未进行最终细胞学诊断的病例中的另外238个细胞进行了评估。细胞总数(9594个)来自100例患者(68例癌和32例良性病变)。

结果

病例的细胞学检查出现了两例假阳性和两例假阴性结果。然而,在8例乳腺导管癌和8例良性病变中,需要组织学确认以证实细胞学诊断。LVQ的应用使87.41%的细胞得到正确分类。通过使用假设值等于50%的比例假设检验在患者层面进行分类,98%的患者得到了正确诊断。

结论

这些结果表明,将神经网络与图像形态测量学和统计技术相结合,可能会提供有关恶性潜能的有用信息,提高乳腺病变细针穿刺的诊断准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验