Suppr超能文献

炎症介质与血脑屏障通透性的调节

Inflammatory mediators and modulation of blood-brain barrier permeability.

作者信息

Abbott N J

机构信息

Division of Physiology, GKT School of Biomedical Sciences, King's College London, UK.

出版信息

Cell Mol Neurobiol. 2000 Apr;20(2):131-47. doi: 10.1023/a:1007074420772.

Abstract
  1. Unlike some interfaces between the blood and the nervous system (e.g., nerve perineurium), the brain endothelium forming the blood-brain barrier can be modulated by a range of inflammatory mediators. The mechanisms underlying this modulation are reviewed, and the implications for therapy of the brain discussed. 2. Methods for measuring blood-brain barrier permeability in situ include the use of radiolabeled tracers in parenchymal vessels and measurements of transendothelial resistance and rate of loss of fluorescent dye in single pial microvessels. In vitro studies on culture models provide details of the signal transduction mechanisms involved. 3. Routes for penetration of polar solutes across the brain endothelium include the paracellular tight junctional pathway (usually very tight) and vesicular mechanisms. Inflammatory mediators have been reported to influence both pathways, but the clearest evidence is for modulation of tight junctions. 4. In addition to the brain endothelium, cell types involved in inflammatory reactions include several closely associated cells including pericytes, astrocytes, smooth muscle, microglia, mast cells, and neurons. In situ it is often difficult to identify the site of action of a vasoactive agent. In vitro models of brain endothelium are experimentally simpler but may also lack important features generated in situ by cell:cell interaction (e.g. induction, signaling). 5. Many inflammatory agents increase both endothelial permeability and vessel diameter, together contributing to significant leak across the blood-brain barrier and cerebral edema. This review concentrates on changes in endothelial permeability by focusing on studies in which changes in vessel diameter are minimized. 6. Bradykinin (Bk) increases blood-brain barrier permeability by acting on B2 receptors. The downstream events reported include elevation of [Ca2+]i, activation of phospholipase A2, release of arachidonic acid, and production of free radicals, with evidence that IL-1 beta potentiates the actions of Bk in ischemia. 7. Serotonin (5HT) has been reported to increase blood-brain barrier permeability in some but not all studies. Where barrier opening was seen, there was evidence for activation of 5-HT2 receptors and a calcium-dependent permeability increase. 8. Histamine is one of the few central nervous system neurotransmitters found to cause consistent blood-brain barrier opening. The earlier literature was unclear, but studies of pial vessels and cultured endothelium reveal increased permeability mediated by H2 receptors and elevation of [Ca2+]i and an H1 receptor-mediated reduction in permeability coupled to an elevation of cAMP. 9. Brain endothelial cells express nucleotide receptors for ATP, UTP, and ADP, with activation causing increased blood-brain barrier permeability. The effects are mediated predominantly via a P2U (P2Y2) G-protein-coupled receptor causing an elevation of [Ca2+]i; a P2Y1 receptor acting via inhibition of adenyl cyclase has been reported in some in vitro preparations. 10. Arachidonic acid is elevated in some neural pathologies and causes gross opening of the blood-brain barrier to large molecules including proteins. There is evidence that arachidonic acid acts via generation of free radicals in the course of its metabolism by cyclooxygenase and lipoxygenase pathways. 11. The mechanisms described reveal a range of interrelated pathways by which influences from the brain side or the blood side can modulate blood-brain barrier permeability. Knowledge of the mechanisms is already being exploited for deliberate opening of the blood-brain barrier for drug delivery to the brain, and the pathways capable of reducing permeability hold promise for therapeutic treatment of inflammation and cerebral edema.
摘要
  1. 与血液和神经系统之间的某些界面(如神经束膜)不同,构成血脑屏障的脑内皮细胞可受到多种炎症介质的调节。本文综述了这种调节的潜在机制,并讨论了其对脑部治疗的意义。2. 原位测量血脑屏障通透性的方法包括在实质血管中使用放射性标记示踪剂,以及测量跨内皮电阻和单个软脑膜微血管中荧光染料的损失率。对培养模型的体外研究提供了相关信号转导机制的详细信息。3. 极性溶质穿过脑内皮细胞的途径包括细胞旁紧密连接途径(通常非常紧密)和囊泡机制。据报道,炎症介质会影响这两种途径,但最明确的证据是对紧密连接的调节。4. 除了脑内皮细胞,参与炎症反应的细胞类型还包括几种密切相关的细胞,如周细胞、星形胶质细胞、平滑肌、小胶质细胞、肥大细胞和神经元。在原位往往很难确定血管活性药物的作用位点。脑内皮细胞的体外模型在实验上更简单,但可能也缺乏细胞间相互作用在原位产生的重要特征(如诱导、信号传导)。5. 许多炎症因子会增加内皮细胞通透性和血管直径,共同导致血脑屏障的显著渗漏和脑水肿。本综述通过聚焦于血管直径变化最小的研究,重点关注内皮细胞通透性的变化。6. 缓激肽(Bk)通过作用于B2受体增加血脑屏障通透性。报道的下游事件包括细胞内钙离子浓度([Ca2+]i)升高、磷脂酶A2激活、花生四烯酸释放和自由基产生,有证据表明白细胞介素-1β在缺血状态下增强了Bk的作用。7. 在一些但并非所有研究中,血清素(5HT)被报道会增加血脑屏障通透性。在观察到屏障开放的情况下,有证据表明5-HT2受体被激活,且通透性增加依赖于钙离子。8. 组胺是少数被发现可导致血脑屏障持续开放的中枢神经系统神经递质之一。早期文献并不明确,但对软脑膜血管和培养内皮细胞的研究表明,H2受体介导通透性增加,[Ca2+]i升高,而H1受体介导通透性降低并伴有环磷酸腺苷(cAMP)升高。9. 脑内皮细胞表达ATP、UTP和ADP的核苷酸受体,激活这些受体会导致血脑屏障通透性增加。这些作用主要通过P2U(P2Y2)G蛋白偶联受体介导,导致[Ca2+]i升高;在一些体外实验中,还报道了P2Y1受体通过抑制腺苷酸环化酶发挥作用。10. 花生四烯酸在某些神经病理状态下升高,并导致血脑屏障对包括蛋白质在内的大分子物质大量开放。有证据表明,花生四烯酸在通过环氧合酶和脂氧合酶途径代谢过程中通过产生自由基发挥作用。11. 所描述的机制揭示了一系列相互关联的途径,通过这些途径,来自脑侧或血侧的影响可以调节血脑屏障的通透性。对这些机制的了解已被用于有意打开血脑屏障以实现药物向脑内递送,而能够降低通透性的途径有望用于炎症和脑水肿的治疗。

相似文献

9
Regulation of permeability across the blood-brain barrier.血脑屏障通透性的调控。
Adv Exp Med Biol. 2012;763:1-19. doi: 10.1007/978-1-4614-4711-5_1.
10
Mediators of cerebral edema.脑水肿的介质
Adv Exp Med Biol. 1999;474:123-41. doi: 10.1007/978-1-4615-4711-2_11.

引用本文的文献

5
Interfacing with the Brain: How Nanotechnology Can Contribute.与大脑交互:纳米技术如何发挥作用。
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.

本文引用的文献

1
Understanding the Physiology of the Blood-Brain Barrier: In Vitro Models.了解血脑屏障的生理学:体外模型
News Physiol Sci. 1998 Dec;13:287-293. doi: 10.1152/physiologyonline.1998.13.6.287.
3
Tight junctions of the blood-brain barrier.血脑屏障的紧密连接
Cell Mol Neurobiol. 2000 Feb;20(1):57-76. doi: 10.1023/a:1006995910836.
4
Barriers in the immature brain.未成熟大脑中的屏障。
Cell Mol Neurobiol. 2000 Feb;20(1):29-40. doi: 10.1023/a:1006991809927.
10
Two components of blood-brain barrier disruption in the rat.大鼠血脑屏障破坏的两个组成部分。
J Physiol. 1997 Sep 15;503 ( Pt 3)(Pt 3):613-23. doi: 10.1111/j.1469-7793.1997.613bg.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验