Suppr超能文献

Left-ventricular pressure gradients: a computer-model simulation.

作者信息

Verdonck P, Vierendeels J, Riemslagh K, Dick E

机构信息

Institute of Biomedical Technology, University of Gent, Belgium.

出版信息

Med Biol Eng Comput. 1999 Jul;37(4):511-6. doi: 10.1007/BF02513338.

Abstract

Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Therefore a one-dimensional numerical model is developed and validated. The model describes filling (both velocities and pressures) along a left ventricular (LV) base-apex axis. Blood-wall interaction in the left ventricle with moving boundaries is taken into account. The computational results for a canine heart indicate that the observed IVPGs during filling are the consequence of a complex interaction between, on the one hand, pressure waves travelling in the LV and, on the other hand, LV geometry, relaxation and compliance. The computational results indicate the pressure dependency of wavespeed (0.77-1.90 m-1 s) for different mean intraventricular pressures (0.88-5.00 mmHg) and IVPGs up to 2 mmHg, independent of the ratio of end systolic volume and equilibrium volume. Increasing relaxation rate not only decreases minimum basal pressure (2.8 instead of 3.6 mmHg) but also has a strong influence on the time delay between the minimum basal and apical pressures (14 ms instead of 49 ms). The results sustain the hypothesis that pressure-wave propagation determines IVPGs and that IVPGs are no proof of elastic recoil.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验