Suppr超能文献

Left-ventricular pressure gradients: a computer-model simulation.

作者信息

Verdonck P, Vierendeels J, Riemslagh K, Dick E

机构信息

Institute of Biomedical Technology, University of Gent, Belgium.

出版信息

Med Biol Eng Comput. 1999 Jul;37(4):511-6. doi: 10.1007/BF02513338.

Abstract

Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Therefore a one-dimensional numerical model is developed and validated. The model describes filling (both velocities and pressures) along a left ventricular (LV) base-apex axis. Blood-wall interaction in the left ventricle with moving boundaries is taken into account. The computational results for a canine heart indicate that the observed IVPGs during filling are the consequence of a complex interaction between, on the one hand, pressure waves travelling in the LV and, on the other hand, LV geometry, relaxation and compliance. The computational results indicate the pressure dependency of wavespeed (0.77-1.90 m-1 s) for different mean intraventricular pressures (0.88-5.00 mmHg) and IVPGs up to 2 mmHg, independent of the ratio of end systolic volume and equilibrium volume. Increasing relaxation rate not only decreases minimum basal pressure (2.8 instead of 3.6 mmHg) but also has a strong influence on the time delay between the minimum basal and apical pressures (14 ms instead of 49 ms). The results sustain the hypothesis that pressure-wave propagation determines IVPGs and that IVPGs are no proof of elastic recoil.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验