Greenberg N L, Vandervoort P M, Thomas J D
Department of Cardiology, Cleveland Clinic Foundation 44195, USA.
Am J Physiol. 1996 Oct;271(4 Pt 2):H1267-76. doi: 10.1152/ajpheart.1996.271.4.H1267.
Pulsed and continuous wave Doppler velocity measurements are routinely used in clinical practice to assess severity of stenotic and regurgitant valves or to estimate intracavitary pressures. However, this method only evaluates the convective component of the pressure gradient (based on the velocity measurements) and neglects the contribution of inertial forces that can be important, in particular for flow across nonstenotic valves. Digital processing of color Doppler ultrasound data was used to noninvasively estimate both the convective and inertial components of the transmitral pressure difference. Simultaneous pressure and velocity measurements were obtained in six anesthetized open-chest dogs. The instantaneous diastolic transmitral pressure difference is computed from the M mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation. The inclusion of the inertial forces ([delta PI]max = 0.90 +/- 0.30 mmHg) in the noninvasive pressure difference calculation significantly increased the correlation with catheter-based measurement (r = 0.15 +/- 0.23 vs. 0.85 +/- 0.08; P < 0.0001) and also allowed an accurate approximation of the peak early filling pressure difference ([delta PC+I]max = 0.95[delta Pcath]max + 0.07, r = 0.92, P < 0.001, error: epsilon C+I ([delta PC+I]max-[delta Pcath]max) = 0.01 +/- 0.24 mmHg, N = 90]. Noninvasive estimation of left ventricular filling pressure differences using this technique will improve the understanding of diastolic filling and function of the heart.
脉冲波和连续波多普勒速度测量在临床实践中常用于评估狭窄和反流瓣膜的严重程度或估计心腔内压力。然而,这种方法仅评估压力梯度的对流成分(基于速度测量),而忽略了惯性力的作用,而惯性力可能很重要,特别是对于流经无狭窄瓣膜的血流。彩色多普勒超声数据的数字处理被用于无创估计二尖瓣压差的对流和惯性成分。在六只麻醉开胸犬身上同时获得压力和速度测量值。使用伯努利方程的非定常流形式,根据M型时空速度分布计算瞬时舒张期二尖瓣压差。在无创压差计算中纳入惯性力([δPI]max = 0.90 +/- 0.30 mmHg)显著提高了与基于导管测量的相关性(r = 0.15 +/- 0.23对0.85 +/- 0.08;P < 0.0001),并且还能准确近似早期充盈峰值压差([δPC+I]max = 0.95[δPcath]max + 0.07,r = 0.92,P < 0.001,误差:εC+I([δPC+I]max - [δPcath]max) = 0.01 +/- 0.24 mmHg,N = 90)。使用该技术无创估计左心室充盈压差将有助于更好地理解心脏的舒张充盈和功能。