Suppr超能文献

一种用于分析实验性肿瘤生长数据的非参数方法。

A non-parametric method for the analysis of experimental tumour growth data.

作者信息

Chignola R, Liberati D, Chiesa E, Anselmi C, Foroni R, Sartoris S, Brendolan A, Tridente G, Andrighetto G

机构信息

Istituto di Immunologia e Malattie Infettive, Università di Verona, Italy.

出版信息

Med Biol Eng Comput. 1999 Jul;37(4):537-42. doi: 10.1007/BF02513343.

Abstract

Analysis of tumour growth is required to investigate the biology of tumours and to determine the effects of new anti-tumour therapies. A non-parametric mathematical method for the analysis of a set of experimental tumour growth data is described. The method is based on the similarity between time series of tumour size measurements (e.g. tumour volume), similarity being defined as the Euclidean distance between data measured for each tumour at the same time. Subsets of similar time series are found for a given population of tumours. A biologically meaningful parameter H has been derived which is a measure of the scattering of experimental volume samples. The method has been applied to the analysis of the growth of (i) untreated multicellular tumour spheroids obtained with different cell lines and (ii) spheroids treated with cytotoxic drugs (immunotoxins). Results are compared with those previously obtained by applying the classical Gompertz growth model to the analysis of treated and untreated spheroids.

摘要

为了研究肿瘤生物学并确定新型抗肿瘤疗法的效果,需要对肿瘤生长进行分析。本文描述了一种用于分析一组实验性肿瘤生长数据的非参数数学方法。该方法基于肿瘤大小测量值(如肿瘤体积)时间序列之间的相似性,相似性定义为同一时间为每个肿瘤测量的数据之间的欧几里得距离。对于给定的肿瘤群体,找出相似时间序列的子集。已推导出一个具有生物学意义的参数H,它是实验体积样本离散程度的一种度量。该方法已应用于以下分析:(i)用不同细胞系获得的未处理多细胞肿瘤球体的生长,以及(ii)用细胞毒性药物(免疫毒素)处理的球体的生长。将结果与先前通过应用经典的Gompertz生长模型对处理和未处理球体进行分析所获得的结果进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验