Crawford J D, Henriques D Y, Vilis T
Medical Research Council Group for Action and Perception, York University, Toronto, Ontario, Canada M3J 1P3.
J Neurosci. 2000 Mar 15;20(6):2360-8. doi: 10.1523/JNEUROSCI.20-06-02360.2000.
Most models of spatial vision and visuomotor control reconstruct visual space by adding a vector representing the site of retinal stimulation to another vector representing gaze angle. However, this scheme fails to account for the curvatures in retinal projection produced by rotatory displacements in eye orientation. In particular, our simulations demonstrate that even simple vertical eye rotation changes the curvature of horizontal retinal projections with respect to eye-fixed retinal landmarks. We confirmed the existence of such curvatures by measuring target direction in eye coordinates in which the retinotopic representation of horizontally displaced targets curved obliquely as a function of vertical eye orientation. We then asked subjects to point (open loop) toward briefly flashed targets at various points along these lines of curvature. The vector-addition model predicted errors in pointing trajectory as a function of eye orientation. In contrast, with only minor exceptions, actual subjects showed no such errors, showing a complete neural compensation for the eye position-dependent geometry of retinal curvatures. Rather than bolstering the traditional model with additional corrective mechanisms for these nonlinear effects, we suggest that the complete geometry of retinal projection can be decoded through a single multiplicative comparison with three-dimensional eye orientation. Moreover, because the visuomotor transformation for pointing involves specific parietal and frontal cortical processes, our experiment implicates specific regions of cortex in such nonlinear transformations.
大多数空间视觉和视觉运动控制模型通过将代表视网膜刺激部位的向量与代表注视角度的另一个向量相加来重建视觉空间。然而,这种方案无法解释眼球方向的旋转位移所产生的视网膜投影中的曲率。特别是,我们的模拟表明,即使是简单的垂直眼球旋转也会改变水平视网膜投影相对于眼球固定视网膜标志的曲率。我们通过在眼球坐标系中测量目标方向来确认这种曲率的存在,在该坐标系中,水平位移目标的视网膜拓扑表示会随着垂直眼球方向而倾斜弯曲。然后,我们要求受试者(开环)朝着沿这些曲率线的各个点处短暂闪烁的目标进行指向。向量相加模型预测了指向轨迹中的误差作为眼球方向的函数。相比之下,除了少数例外,实际受试者没有表现出此类误差,表明对视网膜曲率的眼球位置依赖性几何结构进行了完全的神经补偿。我们建议,与其用针对这些非线性效应的额外校正机制来支持传统模型,不如通过与三维眼球方向进行单一乘法比较来解码视网膜投影的完整几何结构。此外,由于指向的视觉运动转换涉及特定的顶叶和额叶皮质过程,我们的实验表明皮质的特定区域参与了这种非线性转换。