Suppr超能文献

人类动眼系统在扫视的视觉-运动转换中负责三维眼球定向。

Human oculomotor system accounts for 3-D eye orientation in the visual-motor transformation for saccades.

作者信息

Klier E M, Crawford J D

机构信息

Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada.

出版信息

J Neurophysiol. 1998 Nov;80(5):2274-94. doi: 10.1152/jn.1998.80.5.2274.

Abstract

A recent theoretical investigation has demonstrated that three-dimensional (3-D) eye position dependencies in the geometry of retinal stimulation must be accounted for neurally (i.e., in a visuomotor reference frame transformation) if saccades are to be both accurate and obey Listing's law from all initial eye positions. Our goal was to determine whether the human saccade generator correctly implements this eye-to-head reference frame transformation (RFT), or if it approximates this function with a visuomotor look-up table (LT). Six head-fixed subjects participated in three experiments in complete darkness. We recorded 60 degrees horizontal saccades between five parallel pairs of lights, over a vertical range of +/-40 degrees (experiment 1), and 30 degrees radial saccades from a central target, with the head upright or tilted 45 degrees clockwise/counterclockwise to induce torsional ocular counterroll, under both binocular and monocular viewing conditions (experiments 2 and 3). 3-D eye orientation and oculocentric target direction (i.e., retinal error) were computed from search coil signals in the right eye. Experiment 1: as predicted, retinal error was a nontrivial function of both target displacement in space and 3-D eye orientation (e.g., horizontally displaced targets could induce horizontal or oblique retinal errors, depending on eye position). These data were input to a 3-D visuomotor LT model, which implemented Listing's law, but predicted position-dependent errors in final gaze direction of up to 19.8 degrees. Actual saccades obeyed Listing's law but did not show the predicted pattern of inaccuracies in final gaze direction, i.e., the slope of actual error, as a function of predicted error, was only -0. 01 +/- 0.14 (compared with 0 for RFT model and 1.0 for LT model), suggesting near-perfect compensation for eye position. Experiments 2 and 3: actual directional errors from initial torsional eye positions were only a fraction of those predicted by the LT model (e. g., 32% for clockwise and 33% for counterclockwise counterroll during binocular viewing). Furthermore, any residual errors were immediately reduced when visual feedback was provided during saccades. Thus, other than sporadic miscalibrations for torsion, saccades were accurate from all 3-D eye positions. We conclude that 1) the hypothesis of a visuomotor look-up table for saccades fails to account even for saccades made directly toward visual targets, but rather, 2) the oculomotor system takes 3-D eye orientation into account in a visuomotor reference frame transformation. This transformation is probably implemented physiologically between retinotopically organized saccade centers (in cortex and superior colliculus) and the brain stem burst generator.

摘要

最近的一项理论研究表明,如果扫视要从所有初始眼位都准确且遵循利斯廷定律,那么在视网膜刺激几何结构中三维(3-D)眼位依赖性必须在神经层面得到解释(即,在视觉运动参考系转换中)。我们的目标是确定人类扫视发生器是否正确执行这种眼到头参考系转换(RFT),或者它是否用视觉运动查找表(LT)来近似这个功能。六名头部固定的受试者在完全黑暗中参与了三个实验。我们记录了在五个平行光对之间60度的水平扫视,垂直范围为+/-40度(实验1),以及从中央目标进行的30度径向扫视,头部直立或顺时针/逆时针倾斜45度以诱发扭转性眼反向旋转,在双眼和单眼观察条件下(实验2和3)。通过右眼的搜索线圈信号计算三维眼位方向和以眼为中心的目标方向(即视网膜误差)。实验1:正如预测的那样,视网膜误差是空间中目标位移和三维眼位方向的一个重要函数(例如,水平位移的目标可能会根据眼位诱发水平或倾斜的视网膜误差)。这些数据被输入到一个三维视觉运动LT模型中,该模型实现了利斯廷定律,但预测最终注视方向上与位置相关的误差高达19.8度。实际扫视遵循利斯廷定律,但在最终注视方向上没有显示出预测的不准确模式,即实际误差的斜率作为预测误差的函数仅为-0.01 +/- 0.14(与RFT模型的0和LT模型的1.0相比),表明对眼位的补偿近乎完美。实验2和3:初始扭转眼位产生的实际方向误差只是LT模型预测误差的一小部分(例如,双眼观察时顺时针为32%,逆时针为33%)。此外,当在扫视过程中提供视觉反馈时,任何残留误差都会立即减少。因此,除了偶尔的扭转校准错误外,扫视从所有三维眼位都是准确的。我们得出结论:1)扫视的视觉运动查找表假设甚至无法解释直接朝向视觉目标的扫视,相反,2)动眼系统在视觉运动参考系转换中考虑了三维眼位方向。这种转换可能在视网膜拓扑组织的扫视中枢(在皮层和上丘)和脑干爆发发生器之间在生理上实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验