Suppr超能文献

嗜热和嗜温谷氨酸脱氢酶单体中盐桥的静电强度

Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers.

作者信息

Kumar S, Ma B, Tsai C J, Nussinov R

机构信息

Intramural Research Support Program, SAIC Frederick, National Cancer Institute, Frederick Cancer Research, MD 21702, USA.

出版信息

Proteins. 2000 Mar 1;38(4):368-83. doi: 10.1002/(sici)1097-0134(20000301)38:4<368::aid-prot3>3.0.co;2-r.

Abstract

Here we seek to understand the higher frequency of occurrence of salt bridges in proteins from thermophiles as compared to their mesophile homologs. We focus on glutamate dehydrogenase, owing to the availability of high resolution thermophilic (from Pyrococcus furiosus) and mesophilic (from Clostridium symbiosum) protein structures, the large protein size and the large difference in melting temperatures. We investigate the location, statistics and electrostatic strengths of salt bridges and of their networks within corresponding monomers of the thermophilic and mesophilic enzymes. We find that many of the extra salt bridges which are present in the thermophilic glutamate dehydrogenase monomer but absent in the mesophilic enzyme, form around the active site of the protein. Furthermore, salt bridges in the thermostable glutamate dehydrogenase cluster within the hydrophobic folding units of the monomer, rather than between them. Computation of the electrostatic contribution of salt bridge energies by solving the Poisson equation in a continuum solvent medium, shows that the salt bridges in Pyrococcus furiosus glutamate dehydrogenase are highly stabilizing. In contrast, the salt bridges in the mesophilic Clostridium symbiosum glutamate dehydrogenase are only marginally stabilizing. This is largely the outcome of the difference in the protein environment around the salt bridges in the two proteins. The presence of a larger number of charges, and hence, of salt bridges contributes to an electrostatically more favorable protein energy term. Our results indicate that salt bridges and their networks may have an important role in resisting deformation/unfolding of the protein structure at high temperatures, particularly in critical regions such as around the active site.

摘要

在这里,我们试图理解嗜热菌蛋白质中盐桥出现频率高于其嗜温同源物的原因。我们聚焦于谷氨酸脱氢酶,这是由于有高分辨率的嗜热(来自激烈热球菌)和嗜温(来自共生梭菌)蛋白质结构可供使用,该蛋白质体积大且熔解温度差异大。我们研究了嗜热和嗜温酶相应单体中盐桥及其网络的位置、统计数据和静电强度。我们发现,嗜热谷氨酸脱氢酶单体中存在但嗜温酶中不存在的许多额外盐桥,形成于蛋白质的活性位点周围。此外,嗜热稳定的谷氨酸脱氢酶中的盐桥聚集在单体的疏水折叠单元内,而非单元之间。通过在连续溶剂介质中求解泊松方程来计算盐桥能量的静电贡献,结果表明激烈热球菌谷氨酸脱氢酶中的盐桥具有高度稳定性。相比之下,嗜温共生梭菌谷氨酸脱氢酶中的盐桥仅具有微弱的稳定性。这在很大程度上是两种蛋白质中盐桥周围蛋白质环境差异的结果。电荷数量更多,进而盐桥数量更多,有助于形成静电上更有利的蛋白质能量项。我们的结果表明,盐桥及其网络可能在高温下抵抗蛋白质结构的变形/展开方面发挥重要作用,特别是在诸如活性位点周围等关键区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验