Suppr超能文献

静电在温度适应性中的作用洞察:嗜冷、嗜温和嗜热枯草杆菌蛋白酶样丝氨酸蛋白酶的比较研究

Insights into the role of electrostatics in temperature adaptation: a comparative study of psychrophilic, mesophilic, and thermophilic subtilisin-like serine proteases.

作者信息

Xia Yuan-Ling, Sun Jian-Hong, Ai Shi-Meng, Li Yi, Du Xing, Sang Peng, Yang Li-Quan, Fu Yun-Xin, Liu Shu-Qun

机构信息

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming Yunnan P. R. China

Department of Applied Mathematics, Yunnan Agricultural University Kunming Yunnan P. R. China.

出版信息

RSC Adv. 2018 Aug 22;8(52):29698-29713. doi: 10.1039/c8ra05845h. eCollection 2018 Aug 20.

Abstract

To investigate the role of electrostatics in different temperature adaptations, we performed a comparative study on subtilisin-like serine proteases from psychrophilic sp. PA-44 (VPR), mesophilic () (PRK), and thermophilic (AQN) using multiple-replica molecular dynamics (MD) simulations combined with continuum electrostatics calculations. The results reveal that although salt bridges are not a crucial factor in determining the overall thermostability of these three proteases, they on average provide the greatest, moderate, and least electrostatic stabilization to AQN, PRK, and VPR, respectively, at the respective organism growth temperatures. Most salt bridges in AQN are effectively stabilizing and thus contribute to maintaining the overall structural stability at 343 K, while nearly half of the salt bridges in VPR interconvert between being stabilizing and being destabilizing, likely aiding in enhancing the local conformational flexibility at 283 K. The individual salt bridges, salt-bridge networks, and calcium ions contribute differentially to local stability and flexibility of these three enzyme structures, depending on their spatial distributions and electrostatic strengths. The shared negatively charged surface potential at the active center of the three enzymes may provide the active-center flexibility necessary for nucleophilic attack and proton transfer. The differences in distributions of the electro-negative, electro-positive, and electro-neutral potentials, particularly over the back surfaces of the three proteases, may modulate/affect not only protein solubility and thermostability but also structural stability and flexibility/rigidity. These results demonstrate that electrostatics contributes to both heat and cold adaptation of subtilisin-like serine proteases through fine-tuning, either globally or locally, the structural stability and conformational flexibility/rigidity, thus providing a foundation for further engineering and mutagenesis studies.

摘要

为了研究静电在不同温度适应性中的作用,我们使用多重复制分子动力学(MD)模拟结合连续介质静电计算,对来自嗜冷菌sp. PA - 44(VPR)、嗜温菌()(PRK)和嗜热菌(AQN)的枯草杆菌蛋白酶样丝氨酸蛋白酶进行了比较研究。结果表明,虽然盐桥并非决定这三种蛋白酶整体热稳定性的关键因素,但在各自的生物体生长温度下,它们平均分别为AQN、PRK和VPR提供了最大、中等和最小的静电稳定性。AQN中的大多数盐桥具有有效的稳定作用,因此有助于在343 K下维持整体结构稳定性,而VPR中近一半的盐桥在稳定和不稳定之间相互转换,这可能有助于增强283 K下的局部构象灵活性。单个盐桥、盐桥网络和钙离子对这三种酶结构的局部稳定性和灵活性的贡献各不相同,这取决于它们的空间分布和静电强度。三种酶活性中心共享的带负电荷表面电位可能为亲核攻击和质子转移提供所需的活性中心灵活性。电负、电正和电中性电位分布的差异,特别是在这三种蛋白酶的背面,可能不仅调节/影响蛋白质的溶解度和热稳定性,还影响结构稳定性和灵活性/刚性。这些结果表明,静电通过全局或局部微调结构稳定性和构象灵活性/刚性,有助于枯草杆菌蛋白酶样丝氨酸蛋白酶对热和冷的适应,从而为进一步的工程和诱变研究奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f22e/9085296/841f7c336d79/c8ra05845h-f1.jpg

相似文献

2
Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
J Biomol Struct Dyn. 2017 May;35(7):1500-1517. doi: 10.1080/07391102.2016.1188155. Epub 2016 Aug 2.
3
Dynamic properties of extremophilic subtilisin-like serine-proteases.
J Struct Biol. 2011 Apr;174(1):69-83. doi: 10.1016/j.jsb.2011.01.006. Epub 2011 Jan 27.
4
Different roles of electrostatics in heat and in cold: adaptation by citrate synthase.
Chembiochem. 2004 Mar 5;5(3):280-90. doi: 10.1002/cbic.200300627.
5
Highly conserved salt bridge stabilizes a proteinase K subfamily enzyme, Aqualysin I, from Thermus aquaticus YT-1.
AMB Express. 2014 Aug 13;4:59. doi: 10.1186/s13568-014-0059-2. eCollection 2014.
6
The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase.
Biochim Biophys Acta. 2014 Dec;1844(12):2174-81. doi: 10.1016/j.bbapap.2014.08.011. Epub 2014 Aug 27.
7
Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics.
Biochim Biophys Acta. 2014 Apr;1844(4):705-12. doi: 10.1016/j.bbapap.2014.02.009. Epub 2014 Feb 21.
8
A single mutation Gln142Lys doubles the catalytic activity of VPR, a cold adapted subtilisin-like serine proteinase.
Biochim Biophys Acta. 2016 Oct;1864(10):1436-43. doi: 10.1016/j.bbapap.2016.07.003. Epub 2016 Jul 25.
9
Characteristics of mutants designed to incorporate a new ion pair into the structure of a cold adapted subtilisin-like serine proteinase.
Biochim Biophys Acta. 2009 Mar;1794(3):512-8. doi: 10.1016/j.bbapap.2008.11.018. Epub 2008 Dec 6.
10
Optimization of electrostatics as a strategy for cold-adaptation: a case study of cold- and warm-active elastases.
J Mol Graph Model. 2007 Jul;26(1):93-103. doi: 10.1016/j.jmgm.2006.09.012. Epub 2006 Sep 30.

引用本文的文献

1
Characterization and mechanism investigation of salt-activated methionine sulfoxide reductase A from halophiles.
iScience. 2024 Aug 23;27(9):110806. doi: 10.1016/j.isci.2024.110806. eCollection 2024 Sep 20.
3
Living in trinity of extremes: Genomic and proteomic signatures of halophilic, thermophilic, and pH adaptation.
Curr Res Struct Biol. 2024 Feb 1;7:100129. doi: 10.1016/j.crstbi.2024.100129. eCollection 2024.
4
A Bibliometric Analysis: Current Perspectives and Potential Trends of Enzyme Thermostability from 1991-2022.
Appl Biochem Biotechnol. 2024 Mar;196(3):1211-1240. doi: 10.1007/s12010-023-04615-6. Epub 2023 Jun 29.
6
Thermostability engineering of industrial enzymes through structure modification.
Appl Microbiol Biotechnol. 2022 Aug;106(13-16):4845-4866. doi: 10.1007/s00253-022-12067-x. Epub 2022 Jul 9.
7
Identification of lactoferrin-derived peptides as potential inhibitors against the main protease of SARS-CoV-2.
Lebensm Wiss Technol. 2022 Jan 15;154:112684. doi: 10.1016/j.lwt.2021.112684. Epub 2021 Oct 23.
9
The Energetic Origin of Different Catalytic Activities in Temperature-Adapted Trypsins.
ACS Omega. 2020 Sep 23;5(39):25077-25086. doi: 10.1021/acsomega.0c02401. eCollection 2020 Oct 6.
10
Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity.
J Biol Chem. 2020 Oct 16;295(42):14488-14500. doi: 10.1074/jbc.RA119.012300. Epub 2020 Aug 17.

本文引用的文献

2
Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
J Biomol Struct Dyn. 2017 May;35(7):1500-1517. doi: 10.1080/07391102.2016.1188155. Epub 2016 Aug 2.
3
Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K.
Int J Mol Sci. 2016 Feb 19;17(2):254. doi: 10.3390/ijms17020254.
4
pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.
Proteins. 2015 Dec;83(12):2186-97. doi: 10.1002/prot.24935. Epub 2015 Oct 16.
5
The role of salt bridges on the temperature adaptation of aqualysin I, a thermostable subtilisin-like proteinase.
Biochim Biophys Acta. 2014 Dec;1844(12):2174-81. doi: 10.1016/j.bbapap.2014.08.011. Epub 2014 Aug 27.
6
Protein surface softness is the origin of enzyme cold-adaptation of trypsin.
PLoS Comput Biol. 2014 Aug 28;10(8):e1003813. doi: 10.1371/journal.pcbi.1003813. eCollection 2014 Aug.
7
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
8
Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation.
J Phys Chem B. 2014 Jul 17;118(28):7715-29. doi: 10.1021/jp409805p. Epub 2014 Feb 10.
9
Maximum allowed solvent accessibilites of residues in proteins.
PLoS One. 2013 Nov 21;8(11):e80635. doi: 10.1371/journal.pone.0080635. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验