Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
Science and Technology Research Center, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt.
Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02387-18. Print 2019 Feb 1.
The lower convective layer (LCL) of the Atlantis II brine pool of the Red Sea is a unique environment in terms of high salinity, temperature, and high concentrations of heavy metals. Mercuric reductase enzymes functional in such extreme conditions could be considered a potential tool in the environmental detoxification of mercurial poisoning and might alleviate ecological hazards in the mining industry. Here, we constructed a mercuric reductase library from Atlantis II, from which we identified genes encoding two thermostable mercuric reductase (MerA) isoforms: one is halophilic (designated ATII-LCL) while the other is not (designated ATII-LCL-NH). The ATII-LCL MerA has a short motif composed of four aspartic acids (4D414-417) and two characteristic signature boxes that played a crucial role in its thermal stability. To further understand the mechanism behind the thermostability of the two studied enzymes, we mutated the isoform ATII-LCL-NH and found that the substitution of 2 aspartic acids (2D) at positions 415 and 416 enhanced the thermal stability, while other mutations had the opposite effect. The 2D mutant showed superior thermal tolerance, as it retained 81% of its activity after 10 min of incubation at 70°C. A three-dimensional structure prediction revealed newly formed salt bridges and H bonds in the 2D mutant compared to the parent molecule. To the best of our knowledge, this study is the first to rationally design a mercuric reductase with enhanced thermal stability, which we propose to have a strong potential in the bioremediation of mercurial poisoning. The Red Sea is an attractive environment for bioprospecting. There are 25 brine-filled deeps in the Red Sea. The Atlantis II brine pool is the biggest and hottest of such hydrothermal ecosystems. We generated an environmental mercuric reductase library from the lowermost layer of the Atlantis II brine pool, in which we identified two variants of the mercuric reductase enzyme (MerA). One is the previously described halophilic and thermostable ATII-LCL MerA and the other is a nonhalophilic relatively less thermostable enzyme, designated ATII-LCL-NH MerA. We used the ATII-LCL-NH enzyme as a parent molecule to locate the amino acid residues involved in the noticeably higher thermotolerance of the homolog ATII-LCL MerA. Moreover, we designed a novel enzyme with superior thermal stability. This enzyme might have strong potential in the bioremediation of mercuric toxicity.
阿特兰蒂斯 II 卤水池的下对流层 (LCL) 是一个独特的环境,具有高盐度、高温和重金属高浓度等特点。在这种极端条件下发挥功能的汞还原酶可能被视为环境中汞中毒解毒的潜在工具,并可能减轻采矿业的生态危害。在这里,我们从阿特兰蒂斯 II 构建了一个汞还原酶文库,从中鉴定出编码两种耐热汞还原酶 (MerA) 同工型的基因:一种是嗜盐的(命名为 ATII-LCL),另一种不是(命名为 ATII-LCL-NH)。ATII-LCL MerA 具有由四个天冬氨酸 (4D414-417) 组成的短基序和两个特征签名框,这些对其热稳定性起着至关重要的作用。为了进一步了解两种研究酶耐热性的背后机制,我们突变了同工型 ATII-LCL-NH,并发现取代位置 415 和 416 的 2 个天冬氨酸 (2D) 增强了热稳定性,而其他突变则产生了相反的效果。2D 突变体表现出更好的耐热性,因为它在 70°C 孵育 10 分钟后保留了 81%的活性。三维结构预测显示,与母体分子相比,2D 突变体中新形成了盐桥和氢键。据我们所知,这项研究首次合理设计了一种具有增强热稳定性的汞还原酶,我们认为它在汞中毒的生物修复方面具有很强的潜力。红海是生物勘探的一个有吸引力的环境。红海有 25 个充满卤水的深海。阿特兰蒂斯 II 卤水池是此类热液生态系统中最大和最热的一个。我们从阿特兰蒂斯 II 卤水池的最底层生成了一个环境汞还原酶文库,从中鉴定出两种汞还原酶 (MerA) 变体。一种是之前描述的嗜盐和耐热的 ATII-LCL MerA,另一种是相对不太耐热的非嗜盐酶,命名为 ATII-LCL-NH MerA。我们使用 ATII-LCL-NH 酶作为母体分子,定位参与同源物 ATII-LCL MerA 明显更高耐热性的氨基酸残基。此外,我们设计了一种具有优越热稳定性的新型酶。这种酶在汞毒性的生物修复方面可能具有很强的潜力。