Hong K, Mano I, Driscoll M
Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
J Neurosci. 2000 Apr 1;20(7):2575-88. doi: 10.1523/JNEUROSCI.20-07-02575.2000.
Mechanosensory signaling mediated by mechanically gated ion channels constitutes the basis for the senses of touch and hearing and contributes fundamentally to the development and homeostasis of all organisms. Despite this profound importance in biology, little is known of the molecular identities or functional requirements of mechanically gated ion channels. We report a genetically based structure-function analysis of the candidate mechanotransducing channel subunit MEC-4, a core component of a touch-sensing complex in Caenorhabditis elegans and a member of the DEG/ENaC superfamily. We identify molecular lesions in 40 EMS-induced mec-4 alleles and further probe residue and domain function using site-directed approaches. Our analysis highlights residues and subdomains critical for MEC-4 activity and suggests possible roles of these in channel assembly and/or function. We describe a class of substitutions that disrupt normal channel activity in touch transduction but remain permissive for neurotoxic channel hyperactivation, and we show that expression of an N-terminal MEC-4 fragment interferes with in vivo channel function. These data advance working models for the MEC-4 mechanotransducing channel and identify residues, unique to MEC-4 or the MEC-4 degenerin subfamily, that might be specifically required for mechanotransducing function. Because many other substitutions identified by our study affect residues conserved within the DEG/ENaC channel superfamily, this work also provides a broad view of structure-function relations in the superfamily as a whole. Because the C. elegans genome encodes representatives of a large number of eukaryotic channel classes, we suggest that similar genetic-based structure-activity studies might be generally applied to generate insight into the in vivo function of diverse channel types.
由机械门控离子通道介导的机械感觉信号传导构成了触觉和听觉的基础,并对所有生物体的发育和体内平衡起着根本性作用。尽管在生物学中具有如此重要的意义,但人们对机械门控离子通道的分子身份或功能需求却知之甚少。我们报告了对候选机械转导通道亚基MEC - 4进行的基于遗传学的结构 - 功能分析,MEC - 4是秀丽隐杆线虫触觉感受复合体的核心成分,也是DEG/ENaC超家族的成员。我们鉴定了40个经EMS诱导的mec - 4等位基因中的分子损伤,并使用定点方法进一步探究残基和结构域的功能。我们的分析突出了对MEC - 4活性至关重要的残基和亚结构域,并暗示了它们在通道组装和/或功能中的可能作用。我们描述了一类在触觉转导中破坏正常通道活性但对神经毒性通道过度激活仍允许的替代物,并且我们表明N端MEC - 4片段的表达会干扰体内通道功能。这些数据推进了MEC - 4机械转导通道的工作模型,并鉴定了MEC - 4或MEC - 4退化蛋白亚家族特有的可能对机械转导功能有特定需求的残基。由于我们研究中鉴定的许多其他替代物影响了DEG/ENaC通道超家族内保守的残基,这项工作也提供了对整个超家族结构 - 功能关系的广泛见解。由于秀丽隐杆线虫基因组编码了大量真核通道类别的代表,我们建议类似的基于遗传学的结构 - 活性研究可能普遍适用于深入了解各种通道类型的体内功能。