Suppr超能文献

来自大肠杆菌的三种NifS同源物的动力学和突变研究:L-半胱氨酸脱硫酶和L-硒代半胱氨酸裂解酶反应之间的机制差异

Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions.

作者信息

Mihara H, Kurihara T, Yoshimura T, Esaki N

机构信息

Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

出版信息

J Biochem. 2000 Apr;127(4):559-67. doi: 10.1093/oxfordjournals.jbchem.a022641.

Abstract

We have purified three NifS homologs from Escherichia coli, CSD, CsdB, and IscS, that appear to be involved in iron-sulfur cluster formation and/or the biosynthesis of selenophosphate. All three homologs catalyze the elimination of Se and S from L-selenocysteine and L-cysteine, respectively, to form L-alanine. These pyridoxal 5'-phosphate enzymes were inactivated by abortive transamination, yielding pyruvate and a pyridoxamine 5'-phosphate form of the enzyme. The enzymes showed non-Michaelis-Menten behavior for L-selenocysteine and L-cysteine. When pyruvate was added, they showed Michaelis-Menten behavior for L-selenocysteine but not for L-cysteine. Pyruvate significantly enhanced the activity of CSD toward L-selenocysteine. Surprisingly, the enzyme activity toward L-cysteine was not increased as much by pyruvate, suggesting the presence of different rate-limiting steps or reaction mechanisms for L-cysteine desulfurization and the degradation of L-selenocysteine. We substituted Ala for each of Cys358 in CSD, Cys364 in CsdB, and Cys328 in IscS, residues that correspond to the catalytically essential Cys325 of Azotobacter vinelandii NifS. The enzyme activity toward L-cysteine was almost completely abolished by the mutations, whereas the activity toward L-selenocysteine was much less affected. This indicates that the reaction mechanism of L-cysteine desulfurization is different from that of L-selenocysteine decomposition, and that the conserved cysteine residues play a critical role only in L-cysteine desulfurization.

摘要

我们从大肠杆菌中纯化出了三种NifS同源物,即CSD、CsdB和IscS,它们似乎参与铁硫簇的形成和/或硒代磷酸酯的生物合成。所有这三种同源物分别催化从L-硒代半胱氨酸和L-半胱氨酸中消除硒和硫,形成L-丙氨酸。这些磷酸吡哆醛5'-磷酸酶因无效转氨作用而失活,产生丙酮酸和该酶的磷酸吡哆胺5'-磷酸形式。这些酶对L-硒代半胱氨酸和L-半胱氨酸表现出非米氏行为。当加入丙酮酸时,它们对L-硒代半胱氨酸表现出米氏行为,但对L-半胱氨酸则不然。丙酮酸显著增强了CSD对L-硒代半胱氨酸的活性。令人惊讶的是,丙酮酸对L-半胱氨酸的酶活性增加不多,这表明L-半胱氨酸脱硫和L-硒代半胱氨酸降解存在不同的限速步骤或反应机制。我们将丙氨酸取代了CSD中的Cys358、CsdB中的Cys364和IscS中的Cys328,这些残基对应于棕色固氮菌NifS的催化必需的Cys325。这些突变几乎完全消除了对L-半胱氨酸的酶活性,而对L-硒代半胱氨酸的活性影响较小。这表明L-半胱氨酸脱硫的反应机制与L-硒代半胱氨酸分解的反应机制不同,并且保守的半胱氨酸残基仅在L-半胱氨酸脱硫中起关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验