Suppr超能文献

Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism.

作者信息

Wang Y, Rudy Y

机构信息

Cardiac Bioelectricity Research and Training Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1019-29. doi: 10.1152/ajpheart.2000.278.4.H1019.

Abstract

Heterogeneity of myocardial structure and membrane excitability is accentuated by pathology and remodeling. In this study, a detailed model of the ventricular myocyte in a multicellular fiber was used to compute a location-dependent quantitative measure of conduction (safety factor, SF) and to determine the kinetics and contribution of sodium current (I(Na)) and L-type calcium current [I(Ca(L))] during conduction. We obtained the following results. 1) SF decreases sharply for propagation into regions of increased electrical load (tissue expansion, increased gap junction coupling, reduced excitability, hyperkalemia); it can be <1 locally (a value indicating conduction failure) and can recover beyond the transition region to resume propagation. 2) SF and propagation across inhomogeneities involve major contribution from I(Ca(L)). 3) Modulating I(Na) or I(Ca(L)) (by blocking agents or calcium overload) can cause unidirectional block in the inhomogeneous region. 4) Structural inhomogeneity causes local augmentation of I(Ca(L)) and suppression of I(Na) in a feedback fashion. 5) Propagation across regions of suppressed I(Na) is achieved via a I(Ca(L))-dependent mechanism. 6) Reduced intercellular coupling can effectively compensate for reduced SF caused by tissue expansion but not by reduced membrane excitability.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验