Suppr超能文献

Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location.

作者信息

El Ghouzzi V, Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J

机构信息

Unité de Recherches sur les Handicaps Génétiques de l'Enfant, INSERM U393, Institut Necker, 149 rue de Sèvres, 75743 Paris cedex 15, France.

出版信息

Hum Mol Genet. 2000 Mar 22;9(5):813-9. doi: 10.1093/hmg/9.5.813.

Abstract

H-TWIST belongs to the family of basic helix-loop-helix (bHLH) transcription factors known to exert their activity through dimer formation. We have demonstrated recently that mutations in H-TWIST account for Saethre-Chotzen syndrome (SCS), an autosomal dominant craniosynostosis syndrome characterized by premature fusion of coronal sutures and limb abnormalities of variable severity. Although insertions, deletions, nonsense and missense mutations have been identified, no genotype-phenotype correlation could be found, suggesting that the gene alterations lead to a loss of protein function irrespective of the mutation. To assess this hypothesis, we studied stability, dimerization capacities and subcellular distribution of three types of TWIST mutant. Here, we show that: (i) nonsense mutations resulted in truncated protein instability; (ii) missense mutations involving the helical domains led to a complete loss of H-TWIST heterodimerization with the E12 bHLH protein in the two-hybrid system and dramatically altered the ability of the TWIST protein to localize in the nucleus of COS-transfected cells; and (iii) in-frame insertion or missense mutations within the loop significantly altered dimer formation but not the nuclear location of the protein. We conclude that at least two distinct mechanisms account for loss of TWIST protein function in SCS patients, namely protein degradation and subcellular mislocalization.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验