Suppr超能文献

活检组织芯中癌症的百分比可准确预测T1-T2期前列腺癌根治性前列腺切除术后的包膜外侵犯和生化复发。

Percentage of cancer on biopsy cores accurately predicts extracapsular extension and biochemical relapse after radical prostatectomy for T1-T2 prostate cancer.

作者信息

Ravery V, Chastang C, Toublanc M, Boccon-Gibod L, Delmas V, Boccon-Gibod L

机构信息

Department of Urology, Bichat Hospital, Paris, France.

出版信息

Eur Urol. 2000 Apr;37(4):449-55. doi: 10.1159/000020167.

Abstract

PURPOSE

To perform a multivariate analysis to investigate the usefulness of eight preoperative variables as predictors of final pathological stage (pT), positive surgical margins (PSM) and biological progression after radical prostatectomy (RP).

MATERIALS AND METHODS

In 143 patients undergoing RP for T1-T2 prostate cancer, the respective values of age, clinical stage, preoperative prostate-specific antigen (PSA), prostate-specific antigen density (PSAD), number of positive biopsies (NPB), Gleason score, length of tissue core invaded by cancer (LTI) and topography (uni/bilaterality) of positive biopsies for predicting extracapsular extension, PSM and biochemical failure (PSA> or =0.05 ng/ml) were evaluated retrospectively. Univariate and multivariate analyses were applied to define the statistical significance of each variable. Actuarial survival without biological progression was calculated using the Kaplan-Meier method (log-rank test).

RESULTS

In this series, 44.8% of patients had extracapsular extension with 41.3% PSM. The mean PSA was 12.4 ng/ml. In univariate analysis, LTI (p<0.0001), NPB (p = 0.0023), PSA (p = 0.0039) and Gleason score (p = 0.0136) were the most powerful variables to predict pT stage; however, in logistic regression analysis, LTI was the most predictive feature. For prediction of PSM, some variables (LTI, NPB and PSA) were found to be of statistical value in univariate analysis, and LTI in combination with NPB and PSA in multivariate analysis. For biological progression, statistical analysis (log rank test) showed PSAD and LTI to be significant predictors.

CONCLUSION

The pathological report regarding the biopsy contains crucial information influencing the prediction of pT stage, PSM and biological progression after RP. LTI, NPB and PSA are the most useful parameters for this purpose.

摘要

目的

进行多变量分析,以研究八个术前变量作为根治性前列腺切除术(RP)后最终病理分期(pT)、手术切缘阳性(PSM)和生物学进展预测指标的有效性。

材料与方法

对143例因T1-T2期前列腺癌接受RP的患者,回顾性评估年龄、临床分期、术前前列腺特异性抗原(PSA)、前列腺特异性抗原密度(PSAD)、阳性活检数量(NPB)、Gleason评分、癌浸润组织芯长度(LTI)以及阳性活检的部位(单侧/双侧)等各自的值,以预测包膜外侵犯、PSM和生化失败(PSA≥0.05 ng/ml)。采用单变量和多变量分析来确定每个变量的统计学意义。使用Kaplan-Meier方法(对数秩检验)计算无生物学进展的精算生存率。

结果

在该系列中,44.8%的患者有包膜外侵犯,41.3%有PSM。平均PSA为12.4 ng/ml。在单变量分析中,LTI(p<0.0001)、NPB(p = 0.0023)、PSA(p = 0.0039)和Gleason评分(p = 0.0136)是预测pT分期的最有力变量;然而,在逻辑回归分析中,LTI是最具预测性的特征。对于PSM的预测,在单变量分析中发现一些变量(LTI、NPB和PSA)具有统计学价值,在多变量分析中LTI与NPB和PSA联合具有统计学价值。对于生物学进展,统计分析(对数秩检验)显示PSAD和LTI是显著的预测指标。

结论

活检的病理报告包含影响RP后pT分期、PSM和生物学进展预测的关键信息。LTI、NPB和PSA是用于此目的最有用的参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验