Suppr超能文献

激光碎石术与氰化物。

Laser lithotripsy and cyanide.

作者信息

Corbin N S, Teichman J M, Nguyen T, Glickman R D, Rihbany L, Pearle M S, Bishoff J T

机构信息

Division of Urology, The University of Texas Health Science Center, San Antonio 78284-7845, USA.

出版信息

J Endourol. 2000 Mar;14(2):169-73. doi: 10.1089/end.2000.14.169.

Abstract

BACKGROUND AND PURPOSE

Holmium:YAG lithotripsy of uric acid calculi produces cyanide. The laser and stone parameters required to produce cyanide are poorly defined. In this study, we tested the hypotheses that cyanide production: (1) varies with holmium:YAG power settings; (2) varies among holmium:YAG, pulsed-dye, and alexandrite lasers; and (3) occurs during holmium:YAG lithotripsy of all purine calculi.

MATERIALS AND METHODS

Holmium:YAG lithotripsy of uric acid calculi was done using various optical fiber diameters (272-940 microm) and pulse energies (0.5-1.5 J) for constant irradiation (0.25 kJ). Fragmentation and cyanide were quantified. Cyanide values were divided by fragmentation values, and fragment sizes were characterized. To test the second hypothesis, uric acid calculi were irradiated with Ho:YAG, pulsed-dye, and alexandrite lasers. Fragmentation and cyanide were measured, and cyanide per fragmentation was calculated. Fragment sizes were characterized. Finally, Ho:YAG lithotripsy (0.25 kJ) of purine and nonpurine calculi was done, and cyanide production was measured.

RESULTS

Fragmentation increased as pulse energy increased for the 550- and 940-microm optical fibers (P < 0.05). Cyanide increased as pulse energy increased for all optical fibers (P < 0.002). Cyanide per fragmentation increased as pulse energy increased for the 272-microm optical fiber (P = 0.03). Fragment size increased as pulse energy increased for the 272-microm, 550-microm, and 940-microm optical fibers (P < 0.001). The mean cyanide production from 0.25 kJ of optical energy was Ho:YAG laser 106 microg, pulsed-dye 55 microm, and alexandrite 1 microg (P < 0.001). The mean cyanide normalized for fragmentation (microg/mg) was 1.18, 0.85, and 0.02, respectively (P < 0.001). The mean fragment size was 0.6, 1.1, and 1.9 mm, respectively (P < 0.001). After 0.25 kJ, the mean amount of cyanide produced was monosodium urate stones 85 microg, uric acid 78 microg, xanthine 17 microg, ammonium acid urate 16 microg, calcium phosphate 8 microg, cystine 7 microg, and struvite 4 microg (P < 0.001).

CONCLUSIONS

Cyanide production varies with Ho:YAG pulse energy. To minimize cyanide and fragment size, Ho:YAG lasertripsy is best done at a pulse energy < or = 1.0 J. Cyanide production from laser lithotripsy of uric acid calculi varies among Ho:YAG, pulsed-dye, and alexandrite lasers and is related to pulse duration. Cyanide is produced by Ho:YAG lasertripsy of all purine calculi.

摘要

背景与目的

钬激光碎石术治疗尿酸结石会产生氰化物。产生氰化物所需的激光和结石参数尚不明确。在本研究中,我们检验了以下假设:氰化物产生:(1)随钬激光功率设置而变化;(2)在钬激光、脉冲染料激光和翠绿宝石激光之间存在差异;(3)在所有嘌呤结石的钬激光碎石术中都会发生。

材料与方法

使用不同光纤直径(272 - 940微米)和脉冲能量(0.5 - 1.5焦耳)对尿酸结石进行钬激光碎石术,持续照射(0.25千焦)。对结石碎片和氰化物进行定量分析。将氰化物值除以碎片值,并对碎片大小进行表征。为检验第二个假设,用钬激光、脉冲染料激光和翠绿宝石激光照射尿酸结石。测量结石碎片和氰化物,并计算每单位碎片产生的氰化物量。对碎片大小进行表征。最后,对嘌呤结石和非嘌呤结石进行钬激光碎石术(0.25千焦),并测量氰化物产生量。

结果

对于550微米和940微米光纤,随着脉冲能量增加,结石碎片增加(P < 0.05)。对于所有光纤,随着脉冲能量增加,氰化物增加(P < 0.002)。对于272微米光纤,每单位碎片产生的氰化物随着脉冲能量增加而增加(P = 0.03)。对于272微米、550微米和940微米光纤,随着脉冲能量增加,碎片大小增加(P < 0.001)。0.25千焦光能产生的平均氰化物量为:钬激光106微克,脉冲染料激光55微克,翠绿宝石激光1微克(P < 0.001)。经碎片归一化后的平均氰化物量(微克/毫克)分别为1.18、0.85和0.02(P < 0.001)。平均碎片大小分别为0.6毫米、1.1毫米和1.9毫米(P < 0.001)。0.25千焦能量后,产生的平均氰化物量为:尿酸钠结石85微克,尿酸78微克,黄嘌呤17微克,尿酸铵16微克,磷酸钙8微克,胱氨酸7微克,磷酸铵镁4微克(P < 0.001)。

结论

氰化物产生量随钬激光脉冲能量而变化。为使氰化物和碎片大小最小化,钬激光碎石术最好在脉冲能量≤1.0焦耳时进行。尿酸结石激光碎石术中氰化物产生量在钬激光、脉冲染料激光和翠绿宝石激光之间存在差异,且与脉冲持续时间有关。所有嘌呤结石的钬激光碎石术都会产生氰化物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验