Suppr超能文献

Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization.

作者信息

Barshtein G, Wajnblum D, Yedgar S

机构信息

Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem, Israel 91120, USA.

出版信息

Biophys J. 2000 May;78(5):2470-4. doi: 10.1016/S0006-3495(00)76791-9.

Abstract

Red blood cells (RBCs) in the presence of plasma proteins or other macromolecules may form aggregates, normally in rouleaux formations, which are dispersed with increasing blood flow. Experimental observations have suggested that the spontaneous aggregation process involves the formation of linear rouleaux (FLR) followed by formation of branched rouleaux networks. Theoretical models for the spontaneous rouleaux formation were formulated, taking into consideration that FLR may involve both "polymerization," i.e., interaction between two single RBCs (e + e) and the addition of a single RBC to the end of an existing rouleau (e + r), as well as "condensation" between two rouleaux by end-to-end addition (r + r). The present study was undertaken to experimentally examine the theoretical models and their assumptions, by visual monitoring of the spontaneous FLR (from singly dispersed RBC) in plasma, in a narrow gap flow chamber. The results validate the theoretical model, showing that FLR involves both polymerization and condensation, and that the kinetic constants for the above three types of intercellular interactions are the same, i.e., k(ee) = k(er) = k(rr) = k, and for all tested hematocrits (0.625-6%) k < 0.13 +/- 0.03 s(-1).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验