Suppr超能文献

剪切速率对简单剪切流中红细胞缗钱状聚集的影响。

Effects of shear rate on rouleau formation in simple shear flow.

作者信息

Murata T, Secomb T W

机构信息

Department of Physiology, University of Arizona, Tucson.

出版信息

Biorheology. 1988;25(1-2):113-22. doi: 10.3233/bir-1988-251-218.

Abstract

A kinetic equation for rouleau formation in a simple shear flow is derived, based on several assumptions. These are (a) colliding rouleaux stick to one another with a certain probability to form a single rouleau; (b) simultaneous collisions between more than two rouleaux are negligible; (c) rouleaux are broken by a viscous force exerted by the suspending fluid on the surfaces of rouleaux; (d) when a rouleau is broken by viscous forces, only two fragments are formed. Based on a simple mathematical model, collision rate, sticking probability and degradation rate are obtained as functions of applied shear rate. From the solution of the kinetic equation, the average size of rouleaux is obtained as a function of time with shear rate as a parameter. It is shown that the average size of rouleaux increases monotonically with increasing time and tends to an equilibrium size. The average size of rouleaux in a dynamical equilibrium decreases monotonically with increasing shear rate and tends to one cell as shear rate approaches infinity. It is also found that the initial rate of rouleau formation increases with increasing shear rate at very low shear rate, but this trend is reversed at higher shear rates. The theoretical results are compared quantitatively with experimental data.

摘要

基于若干假设,推导了简单剪切流中红细胞缗钱状形成的动力学方程。这些假设包括:(a)相互碰撞的缗钱状以一定概率相互黏附形成单个缗钱状;(b)两个以上缗钱状的同时碰撞可忽略不计;(c)缗钱状被悬浮液作用于其表面的黏性力破坏;(d)当缗钱状被黏性力破坏时,仅形成两个碎片。基于一个简单的数学模型,得到了碰撞速率、黏附概率和降解速率作为外加剪切速率的函数。从动力学方程的解中,得到了以剪切速率为参数的缗钱状平均尺寸随时间的变化函数。结果表明,缗钱状的平均尺寸随时间单调增加并趋于平衡尺寸。动态平衡中缗钱状的平均尺寸随剪切速率的增加而单调减小,当剪切速率趋于无穷大时趋于单个细胞的尺寸。还发现,在极低剪切速率下,缗钱状形成的初始速率随剪切速率的增加而增加,但在较高剪切速率下这种趋势相反。将理论结果与实验数据进行了定量比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验