Samsel R W, Perelson A S
Biophys J. 1982 Feb;37(2):493-514. doi: 10.1016/S0006-3495(82)84696-1.
In the presence of certain macromolecules, such as fibrinogen, immunoglobulin, dextran, and polylysine, erythrocytes tend to aggregate and form cylindrical clusters called "rouleaux" in which cells resemble coins in a stack. The aggregates may remain cylindrical or they may branch, forming tree, and networklike structures. Using the law of mass action and notions from polymer chemistry, we derive expressions describing the kinetics of the early phase of aggregation. Our models generalize work initiated by Ponder in 1927 who used the Smoluchowski equation to predict the concentration of rouleaux of different sizes. There are two novel features to our generalization. First, we allow erythrocytes that collide near the end of a stack of cells to move to the end of the cylinder and elongate it. Second, we incorporate geometric information into our models and describe the kinetics of branched rouleau formation. From our models we can predict the concentration of rouleaux with n cells and b branches, the mean number of cells per rouleau, the mean number of branches per rouleau, and the average length of a branch. Comparisons are made with the available experimental data.
在某些大分子存在的情况下,如纤维蛋白原、免疫球蛋白、右旋糖酐和聚赖氨酸,红细胞倾向于聚集并形成称为“缗钱状”的圆柱形簇,其中细胞类似于堆叠的硬币。聚集体可能保持圆柱形,也可能分支,形成树状和网络状结构。利用质量作用定律和高分子化学的概念,我们推导出了描述聚集早期动力学的表达式。我们的模型推广了1927年庞德尔发起的工作,他使用斯莫卢霍夫斯基方程来预测不同大小缗钱状的浓度。我们的推广有两个新特点。第一,我们允许在细胞堆叠末端附近碰撞的红细胞移动到圆柱体末端并使其伸长。第二,我们将几何信息纳入模型,并描述分支缗钱状形成的动力学。从我们的模型中,我们可以预测具有n个细胞和b个分支的缗钱状的浓度、每个缗钱状的平均细胞数、每个缗钱状的平均分支数以及分支的平均长度。并与现有的实验数据进行了比较。