Gilberger T W, Schirmer R H, Walter R D, Müller S
Bernhard Nocht Institute for Tropical Medicine, Biochemical Parasitology, Bernhard-Nocht-Strasse 74, D-20359, Hamburg, Germany.
Mol Biochem Parasitol. 2000 Apr 15;107(2):169-79. doi: 10.1016/s0166-6851(00)00188-2.
The flavoenzyme glutathione reductase (GR; NADPH+glutathione disulphide+H(+)-->NADP(+)+2 glutathione-SH) of Plasmodium falciparum is a promising drug target against tropical malaria. As P. falciparum genes are assumed to be highly polymorphic we have cloned and expressed the GR cDNA of the chloroquine-sensitive strain 3D7. In comparison to the known GR of the chloroquine-resistant K1 strain there are three base exchanges all of them leading to amino acid substitutions (residues 281, 285 and 335). The catalytic efficiency k(cat)/K(m) of the 3D7 enzyme is 5-fold lower than for the K1 enzyme. In contrast, vis-à-vis the drugs carmustine, methylene blue and fluorophenyliso-alloxazine the two enzyme species exhibited identical inhibition kinetics. Two structural motifs which are specific for P. falciparum GR were studied by mutational deletion analysis of 3D7 GR. Loop 126-138 appears to be important for folding and stability of the enzyme, whereas the subdomain 318-350 was found to be involved in FAD-binding. The subdomain has no major influence on the known functions of the catalytic triad Cys-40, Cys-45 and His-485'. Flavin absorption spectroscopy of inactive point mutants showed that Cys-45 forms a thiolate charge transfer complex and Cys-40 is the interchange thiol, which reduces glutathione disulphide. The mutant His-485-->Gln had a normal K(m) for glutathione disulphide reduction but only 0.8% residual catalytic activity when compared with wild-type GR, which confirms its function as an acid/base catalyst. The parasite-specific domains in combination with the reactive catalytic residues appear to be a suitable target matrix for inhibiting GR in vivo.
恶性疟原虫的黄素酶谷胱甘肽还原酶(GR;NADPH + 谷胱甘肽二硫化物 + H(+) --> NADP(+) + 2 谷胱甘肽-SH)是抗热带疟疾的一个有前景的药物靶点。由于假定恶性疟原虫基因具有高度多态性,我们克隆并表达了氯喹敏感株 3D7 的 GR cDNA。与氯喹抗性 K1 株的已知 GR 相比,有三个碱基交换,所有这些交换都导致氨基酸取代(第 281、285 和 335 位残基)。3D7 酶的催化效率 k(cat)/K(m) 比 K1 酶低 5 倍。相比之下,对于药物卡莫司汀、亚甲蓝和氟苯基异咯嗪,这两种酶表现出相同的抑制动力学。通过对 3D7 GR 进行突变缺失分析,研究了恶性疟原虫 GR 特有的两个结构基序。环 126 - 138 似乎对酶的折叠和稳定性很重要,而亚结构域 318 - 350 被发现参与 FAD 结合。该亚结构域对催化三联体 Cys - 40、Cys - 45 和 His - 485' 的已知功能没有重大影响。无活性点突变体的黄素吸收光谱表明,Cys - 45 形成硫醇盐电荷转移复合物,Cys - 40 是互换硫醇,它还原谷胱甘肽二硫化物。突变体 His - 485 --> Gln 在还原谷胱甘肽二硫化物时具有正常的 K(m),但与野生型 GR 相比,仅具有 0.8% 的残余催化活性,这证实了其作为酸碱催化剂的功能。寄生虫特异性结构域与反应性催化残基相结合,似乎是体内抑制 GR 的合适靶点基质。