Suppr超能文献

镉在海洋硅藻中的生物学功能。

A biological function for cadmium in marine diatoms.

作者信息

Lane T W, Morel F M

机构信息

Department of Geosciences, Princeton University, Princeton, NJ 08544-1003, USA.

出版信息

Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4627-31. doi: 10.1073/pnas.090091397.

Abstract

The oceanic distribution of cadmium follows closely that of major algal nutrients such as phosphate. The reasons for this "nutrient-like" distribution are unclear, however, because cadmium is not generally believed to have a biological function. Herein, we provide evidence of a biological role for Cd in the marine diatom Thalassiosira weissflogii under conditions of low zinc, typical of the marine environment. Addition of Cd to Zn-limited cultures enhances the growth rate of T. weissflogii, particularly at low pCO(2). This increase in growth rate is reflected in increased levels of cellular carbonic anhydrase (CA) activity, although the levels of TWCA1, the major intracellular Zn-requiring isoform of CA in T. weissflogii, remain low. (109)Cd label comigrates with a protein band that shows CA activity and is distinct from TWCA1 on native PAGE of radiolabeled T. weissflogii cell lysates. The levels of the Cd protein are modulated by CO(2) in a manner that is consistent with a role for this enzyme in carbon acquisition. Purification of the CA-active fraction leads to the isolation of a Cd-containing protein of 43 kDa. It is now clear that T. weissflogii expresses a Cd-specific CA, which, particularly under conditions of Zn limitation, can replace the Zn enzyme TWCA1 in its carbon-concentrating mechanism.

摘要

镉在海洋中的分布与主要藻类营养物质(如磷酸盐)的分布密切相关。然而,这种“类营养物质”分布的原因尚不清楚,因为人们普遍认为镉没有生物学功能。在此,我们提供了证据,证明在典型海洋环境的低锌条件下,镉在海洋硅藻威氏海链藻中具有生物学作用。向锌限制培养物中添加镉可提高威氏海链藻的生长速率,尤其是在低pCO₂条件下。生长速率的增加反映在细胞碳酸酐酶(CA)活性水平的提高上,尽管威氏海链藻中主要的细胞内需要锌的CA同工型TWCA1的水平仍然较低。在放射性标记的威氏海链藻细胞裂解物的天然聚丙烯酰胺凝胶电泳上,(109)镉标记与一条显示CA活性且与TWCA1不同的蛋白带共迁移。镉蛋白的水平受CO₂调节,其方式与该酶在碳获取中的作用一致。对CA活性部分进行纯化,得到了一种43 kDa的含镉蛋白。现在很清楚,威氏海链藻表达一种镉特异性CA,特别是在锌限制条件下,它可以在其碳浓缩机制中取代锌酶TWCA1。

相似文献

1
A biological function for cadmium in marine diatoms.
Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4627-31. doi: 10.1073/pnas.090091397.
4
Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters.
Environ Microbiol. 2007 Feb;9(2):403-13. doi: 10.1111/j.1462-2920.2006.01151.x.
5
Biochemistry: a cadmium enzyme from a marine diatom.
Nature. 2005 May 5;435(7038):42. doi: 10.1038/435042a.
6
Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii.
Biochimie. 2012 May;94(5):1232-41. doi: 10.1016/j.biochi.2012.02.013. Epub 2012 Feb 23.
7
Cadmium toxicity to two marine phytoplankton under different nutrient conditions.
Aquat Toxicol. 2006 Jun 15;78(2):114-26. doi: 10.1016/j.aquatox.2006.02.008. Epub 2006 Apr 17.
8
Responses of carbonic anhydrases and Rubisco to abrupt CO changes of seawater in two marine diatoms.
Environ Sci Pollut Res Int. 2019 Jun;26(16):16388-16395. doi: 10.1007/s11356-019-05101-5. Epub 2019 Apr 13.
9
Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms.
Nature. 2008 Mar 6;452(7183):56-61. doi: 10.1038/nature06636.
10
Cadmium in marine phytoplankton.
Met Ions Life Sci. 2013;11:509-28. doi: 10.1007/978-94-007-5179-8_16.

引用本文的文献

1
Analysis on the potential of Pennisetum hydridum for phytoremediation of Cd-polluted soil fertilized by worm castings.
PLoS One. 2025 Mar 31;20(3):e0318528. doi: 10.1371/journal.pone.0318528. eCollection 2025.
2
Particulate Cadmium Accumulation in the Mesopelagic Ocean.
Global Biogeochem Cycles. 2025 Jan;39(1):e2024GB008281. doi: 10.1029/2024GB008281. Epub 2025 Jan 4.
3
Early pregnancy metal levels in maternal blood and pregnancy outcomes.
Sci Rep. 2024 Nov 13;14(1):27866. doi: 10.1038/s41598-024-79107-6.
4
Crystal structure and Hirshfeld surface analysis of {2-[bis-(pyridin-2-ylmeth-yl)amino]-ethane-1-thiol-ato}-chlorido-cadmium(II).
Acta Crystallogr E Crystallogr Commun. 2024 Sep 30;80(Pt 10):1081-1086. doi: 10.1107/S2056989024009198. eCollection 2024 Sep 1.
5
Inter- and intra-specific metal tolerance variation in ectomycorrhizal fungal Suillus species.
Mycorrhiza. 2024 Nov;34(5-6):417-427. doi: 10.1007/s00572-024-01162-8. Epub 2024 Jul 22.
6
Alpha Carbonic Anhydrase from Engineered for Increased Activity and Thermostability.
Int J Mol Sci. 2024 May 28;25(11):5853. doi: 10.3390/ijms25115853.
7
Cryo-EM structure of cadmium-bound human ABCB6.
Commun Biol. 2024 May 31;7(1):672. doi: 10.1038/s42003-024-06377-1.
10
Bioaccumulation of Titanium in diatom Cyclotella atomus Hust.
Biometals. 2024 Feb;37(1):71-86. doi: 10.1007/s10534-023-00528-3. Epub 2023 Aug 11.

本文引用的文献

2
Zinc enzymes.
Curr Opin Chem Biol. 1998 Apr;2(2):222-34. doi: 10.1016/s1367-5931(98)80064-1.
4
Carbonic anhydrase: a new method of detection on polyacrylamide gels using low-temperature fluorescence.
Anal Biochem. 1971 Dec;44(2):388-91. doi: 10.1016/0003-2697(71)90224-7.
5
Metal ion dependent binding of sulphonamide to carbonic anhydrase.
Nature. 1967 Apr 8;214(5084):193-4. doi: 10.1038/214193a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验