Suppr超能文献

中枢神经系统神经元的选择性微刺激

Selective microstimulation of central nervous system neurons.

作者信息

McIntyre C C, Grill W M

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106-4912, USA.

出版信息

Ann Biomed Eng. 2000 Mar;28(3):219-33. doi: 10.1114/1.262.

Abstract

The goal of this study was to identify stimulus parameters and electrode geometries that were effective in selectively stimulating targeted neuronal populations within the central nervous system (CNS). Cable models of neurons that included an axon, initial segment, soma, and branching dendritic tree, with geometries and membrane dynamics derived from mammalian motoneurons, were used to study excitation with extracellular electrodes. The models reproduced a wide range of experimentally documented excitation patterns including current-distance and strength-duration relationships. Evaluation of different stimulus paradigms was performed using populations of fifty cells and fifty fibers of passage randomly positioned about an extracellular electrode(s). Monophasic cathodic or anodic stimuli enabled selective stimulation of fibers over cells or cells over fibers, respectively. However, when a symmetrical charge-balancing stimulus phase was incorporated, selectivity was greatly diminished. An anodic first, cathodic second asymmetrical biphasic stimulus enabled selective stimulation of fibers, while a cathodic first, anodic second asymmetrical biphasic stimulus enabled selective stimulation of cells. These novel waveforms provided enhanced selectivity while preserving charge balancing as is required to minimize the risk of electrode corrosion and tissue injury. Furthermore, the models developed in this study can predict the effectiveness of electrode geometries and stimulus parameters for selective activation of specific neuronal populations, and in turn represent useful tools for the design of electrodes and stimulus waveforms for use in CNS neural prosthetic devices.

摘要

本研究的目标是确定能有效选择性刺激中枢神经系统(CNS)内目标神经元群体的刺激参数和电极几何形状。使用包含轴突、起始段、胞体和分支树突的神经元电缆模型,其几何形状和膜动力学源自哺乳动物运动神经元,来研究细胞外电极的兴奋作用。这些模型再现了广泛的实验记录的兴奋模式,包括电流-距离和强度-持续时间关系。使用围绕一个或多个细胞外电极随机定位的五十个细胞和五十个传代纤维群体来评估不同的刺激范式。单相阴极或阳极刺激分别能够选择性刺激纤维而非细胞或细胞而非纤维。然而,当加入对称的电荷平衡刺激相时,选择性会大大降低。阳极先、阴极后的不对称双相刺激能够选择性刺激纤维,而阴极先、阳极后的不对称双相刺激能够选择性刺激细胞。这些新颖的波形在保持电荷平衡的同时提供了增强的选择性,而电荷平衡是将电极腐蚀和组织损伤风险降至最低所必需的。此外,本研究中开发的模型可以预测电极几何形状和刺激参数对特定神经元群体选择性激活的有效性,进而代表了用于中枢神经系统神经假体装置中电极和刺激波形设计的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验