Chen Keying, Wu Bingchen, Krahe Daniela, Vazquez Alberto, Siegenthaler James R, Rechenberg Robert, Li Wen, Cui X Tracy, Kozai Takashi D Y
Department of Bioengineering, Center for the Basis of Neural Cognition.
Department of Radiology, McGowan Institute of Regenerative Medicine, Center for Neuroscience, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Drive, Pittsburgh, PA, 15219, USA.
Adv Funct Mater. 2024 Oct 8;34(41). doi: 10.1002/adfm.202403164. Epub 2024 Jul 17.
Neuromodulation technologies have gained considerable attention for their clinical potential in treating neurological disorders and advancing cognition research. However, traditional methods like electrical stimulation and optogenetics face technical and biological challenges that limit their therapeutic and research applications. A promising alternative, photoelectric neurostimulation, uses near-infrared light to generate electrical pulses and thus enables stimulation of neuronal activity without genetic alterations. This study explores various design strategies to enhance photoelectric stimulation with minimally invasive, ultrasmall, untethered carbon electrodes. Employing a multiphoton laser as the near-infrared (NIR) light source, benchtop experiments are conducted using a three-electrode setup and chronopotentiometry to record photo-stimulated voltage. In vivo evaluations utilize Thy1-GCaMP6s mice with acutely implanted ultrasmall carbon electrodes. Results highlighted the beneficial effects of high duty-cycle laser scanning and photovoltaic polymer interfaces on the photo-stimulated voltages by the implanted electrode. Additionally, the promising potential of carbon-based diamond electrodes are demonstrated for photoelectric stimulation and the application of photoelectric stimulation in precise chemical delivery by loading mesoporous silica nanoparticles (SNPs) co-deposited with polyethylenedioxythiophene (PEDOT). Together, these findings on photoelectric stimulation utilizing ultrasmall carbon electrodes underscore its immense potential for advancing the next generation of neurostimulation technology.
神经调节技术因其在治疗神经系统疾病和推进认知研究方面的临床潜力而备受关注。然而,电刺激和光遗传学等传统方法面临技术和生物学挑战,限制了它们的治疗和研究应用。一种有前途的替代方法——光电神经刺激,利用近红外光产生电脉冲,从而能够在不进行基因改造的情况下刺激神经元活动。本研究探索了各种设计策略,以使用微创、超小、无束缚的碳电极增强光电刺激。采用多光子激光作为近红外(NIR)光源,使用三电极装置和计时电位法进行台式实验,以记录光刺激电压。体内评估使用急性植入超小碳电极的Thy1-GCaMP6s小鼠。结果突出了高占空比激光扫描和光伏聚合物界面对植入电极光刺激电压的有益影响。此外,还展示了碳基金刚石电极在光电刺激方面的潜在前景,以及通过负载与聚乙撑二氧噻吩(PEDOT)共沉积的介孔二氧化硅纳米颗粒(SNP)将光电刺激应用于精确化学递送。总之,这些关于利用超小碳电极进行光电刺激的发现强调了其在推进下一代神经刺激技术方面的巨大潜力。