Suppr超能文献

用于三维序列磁共振脑图像配准的体素相似性度量

Voxel similarity measures for 3-D serial MR brain image registration.

作者信息

Holden M, Hill D L, Denton E R, Jarosz J M, Cox T C, Rohlfing T, Goodey J, Hawkes D J

机构信息

Radiological Sciences and Medical Engineering, Guy's, King's and St Thomas' School of Medicine, King's College London, UK.

出版信息

IEEE Trans Med Imaging. 2000 Feb;19(2):94-102. doi: 10.1109/42.836369.

Abstract

We have evaluated eight different similarity measures used for rigid body registration of serial magnetic resonance (MR) brain scans. To assess their accuracy we used 33 clinical three-dimensional (3-D) serial MR images, with deformable extradural tissue excluded by manual segmentation and simulated 3-D MR images with added intensity distortion. For each measure we determined the consistency of registration transformations for both sets of segmented and unsegmented data. We have shown that of the eight measures tested, the ones based on joint entropy produced the best consistency. In particular, these measures seemed to be least sensitive to the presence of extradural tissue. For these data the difference in accuracy of these joint entropy measures, with or without brain segmentation, was within the threshold of visually detectable change in the difference images.

摘要

我们评估了用于串行磁共振(MR)脑部扫描刚体配准的八种不同相似性度量。为评估其准确性,我们使用了33例临床三维(3-D)串行MR图像,通过手动分割排除了可变形的硬膜外组织,并使用了添加了强度失真的模拟3-D MR图像。对于每种度量,我们确定了分割和未分割数据集的配准变换的一致性。我们已经表明,在测试的八种度量中,基于联合熵的度量产生了最佳的一致性。特别是,这些度量似乎对硬膜外组织的存在最不敏感。对于这些数据,这些联合熵度量在有或没有脑部分割情况下的准确性差异,在差异图像中视觉可检测变化的阈值范围内。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验