Otte M
Neurologische Universitätsklinik, Freiburg, Germany.
IEEE Trans Med Imaging. 2001 Mar;20(3):193-206. doi: 10.1109/42.918470.
A three-dimensional (3-D) elastic registration algorithm has been developed to find a veridical transformation that maps activation patterns from functional magnetic resonance imaging (fMRI) experiments onto a 3-D high-resolution anatomical dataset. The proposed algorithm uses trilinear Bézier-splines and a 3-D voxel-based optimization technique to determine the transformation that maps the functional data onto the coordinate system of the anatomical dataset. Simple conditions are presented which guarantee that the data are mapped one-to-one on each other. Two voxel-based similarity measures, the linear correlation coefficient and the entropy correlation coefficient, are used. Their performance with respect to the registration of fMRI data is compared. Tests on simulated and real data have been performed to evaluate the accuracy of the method. Our results demonstrate that subvoxel accuracy can be achieved even for noisy low-resolution multislice datasets with local distortions up to 10 mm. Although the method is optimized for the registration of functional and anatomical MR images, it can also be used for solving other elastic registration problems.
已开发出一种三维(3-D)弹性配准算法,以找到一种真实变换,将功能磁共振成像(fMRI)实验中的激活模式映射到三维高分辨率解剖数据集上。所提出的算法使用三线性贝塞尔样条和基于三维体素的优化技术来确定将功能数据映射到解剖数据集坐标系上的变换。给出了保证数据相互一一映射的简单条件。使用了两种基于体素的相似性度量,即线性相关系数和熵相关系数。比较了它们在fMRI数据配准方面的性能。已对模拟数据和真实数据进行测试,以评估该方法的准确性。我们的结果表明,即使对于存在高达10毫米局部畸变的有噪声低分辨率多层数据集,也能实现亚体素精度。尽管该方法针对功能和解剖磁共振图像的配准进行了优化,但它也可用于解决其他弹性配准问题。
IEEE Trans Med Imaging. 2001-3
IEEE Trans Med Imaging. 2000-2
Brain Topogr. 2005
IEEE Trans Med Imaging. 2002-11
Acad Radiol. 2005-10
Annu Int Conf IEEE Eng Med Biol Soc. 2012
Annu Int Conf IEEE Eng Med Biol Soc. 2011
Inf Process Med Imaging. 2009
Top Magn Reson Imaging. 2005-12