Suppr超能文献

Nearest neighbor classification in 3D protein databases.

作者信息

Ankerst M, Kastenmüller G, Kriegel H P, Seidl T

机构信息

University of Munich, Institute for Computer Science, Germany.

出版信息

Proc Int Conf Intell Syst Mol Biol. 1999:34-43.

Abstract

In molecular databases, structural classification is a basic task that can be successfully approached by nearest neighbor methods. The underlying similarity models consider spatial properties such as shape and extension as well as thematic attributes. We introduce 3D shape histograms as an intuitive and powerful approach to model similarity for solid objects such as molecules. Errors of measurement, sampling, and numerical rounding may result in small displacements of atomic coordinates. These effects may be handled by using quadratic form distance functions. An efficient processing of similarity queries based on quadratic forms is supported by a filter-refinement architecture. Experiments on our 3D protein database demonstrate the high classification accuracy of more than 90% and the good performance of the technique.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验