Suppr超能文献

生物大分子低分辨率密度图的形状和拓扑建模。

Modeling shape and topology of low-resolution density maps of biological macromolecules.

作者信息

De-Alarcón Pedro A, Pascual-Montano Alberto, Gupta Amarnath, Carazo Jose M

机构信息

Biocomputing Unit, Centro Nacional de Biotecnologia (CSIC), Campus UAM, Cantoblanco, 28049 Madrid, Spain.

出版信息

Biophys J. 2002 Aug;83(2):619-32. doi: 10.1016/S0006-3495(02)75196-5.

Abstract

In the present work we develop an efficient way of representing the geometry and topology of volumetric datasets of biological structures from medium to low resolution, aiming at storing and querying them in a database framework. We make use of a new vector quantization algorithm to select the points within the macromolecule that best approximate the probability density function of the original volume data. Connectivity among points is obtained with the use of the alpha shapes theory. This novel data representation has a number of interesting characteristics, such as 1) it allows us to automatically segment and quantify a number of important structural features from low-resolution maps, such as cavities and channels, opening the possibility of querying large collections of maps on the basis of these quantitative structural features; 2) it provides a compact representation in terms of size; 3) it contains a subset of three-dimensional points that optimally quantify the densities of medium resolution data; and 4) a general model of the geometry and topology of the macromolecule (as opposite to a spatially unrelated bunch of voxels) is easily obtained by the use of the alpha shapes theory.

摘要

在本工作中,我们开发了一种高效的方法来表示中低分辨率生物结构体积数据集的几何形状和拓扑结构,旨在将它们存储在数据库框架中并进行查询。我们利用一种新的矢量量化算法来选择大分子内最能近似原始体积数据概率密度函数的点。通过使用α形状理论获得点之间的连通性。这种新颖的数据表示具有许多有趣的特性,例如:1)它使我们能够从低分辨率图谱中自动分割和量化许多重要的结构特征,如腔和通道,从而有可能基于这些定量结构特征查询大量图谱集合;2)它在大小方面提供了紧凑的表示;3)它包含三维点的一个子集,可最佳地量化中分辨率数据的密度;4)通过使用α形状理论,可以轻松获得大分子几何形状和拓扑结构的通用模型(与空间上不相关的一堆体素相反)。

相似文献

1
Modeling shape and topology of low-resolution density maps of biological macromolecules.
Biophys J. 2002 Aug;83(2):619-32. doi: 10.1016/S0006-3495(02)75196-5.
2
Multi-resolution anchor-point registration of biomolecular assemblies and their components.
J Struct Biol. 2007 Jan;157(1):271-80. doi: 10.1016/j.jsb.2006.08.008. Epub 2006 Aug 25.
3
FEMME database: topologic and geometric information of macromolecules.
J Struct Biol. 2003 Oct-Nov;144(1-2):104-13. doi: 10.1016/j.jsb.2003.09.014.
5
The de Rham-Hodge Analysis and Modeling of Biomolecules.
Bull Math Biol. 2020 Aug 8;82(8):108. doi: 10.1007/s11538-020-00783-2.
6
Determining protein topology from skeletons of secondary structures.
J Mol Biol. 2005 Jul 15;350(3):571-86. doi: 10.1016/j.jmb.2005.04.064.
7
Edged watershed segmentation: a semi-interactive algorithm for segmentation of low-resolution maps from electron cryomicroscopy.
J Struct Biol. 2011 Oct;176(1):127-32. doi: 10.1016/j.jsb.2011.06.012. Epub 2011 Jul 6.
9
Self-organizing neural networks bridge the biomolecular resolution gap.
J Mol Biol. 1998 Dec 18;284(5):1247-54. doi: 10.1006/jmbi.1998.2232.

引用本文的文献

1
Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy.
J Struct Biol. 2017 Jul;199(1):12-26. doi: 10.1016/j.jsb.2017.05.007. Epub 2017 May 25.
4
Determining functionally important amino acid residues of the E1 protein of Venezuelan equine encephalitis virus.
J Mol Model. 2006 Sep;12(6):921-9. doi: 10.1007/s00894-006-0101-7. Epub 2006 Apr 11.
5
Gaussian mapping of chemical fragments in ligand binding sites.
J Comput Aided Mol Des. 2004 Feb;18(2):101-18. doi: 10.1023/b:jcam.0000030033.26053.40.

本文引用的文献

1
A novel neural network technique for analysis and classification of EM single-particle images.
J Struct Biol. 2001 Feb-Mar;133(2-3):233-45. doi: 10.1006/jsbi.2001.4369.
2
Using situs for flexible and rigid-body fitting of multiresolution single-molecule data.
J Struct Biol. 2001 Feb-Mar;133(2-3):193-202. doi: 10.1006/jsbi.2000.4350.
3
The DnaB.DnaC complex: a structure based on dimers assembled around an occluded channel.
EMBO J. 2001 Mar 15;20(6):1462-8. doi: 10.1093/emboj/20.6.1462.
4
Macromolecular electron microscopy in the era of structural genomics.
Trends Biochem Sci. 2000 Dec;25(12):624-31. doi: 10.1016/s0968-0004(00)01720-5.
5
Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms.
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14245-50. doi: 10.1073/pnas.230282097.
7
Structural determinants of water permeation through aquaporin-1.
Nature. 2000 Oct 5;407(6804):599-605. doi: 10.1038/35036519.
8
Nearest neighbor classification in 3D protein databases.
Proc Int Conf Intell Syst Mol Biol. 1999:34-43.
9
The Protein Data Bank.
Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235.
10
Complementing crystallography: the role of cryo-electron microscopy in structural biology.
Acta Crystallogr D Biol Crystallogr. 1999 Oct;55(Pt 10):1742-9. doi: 10.1107/s0907444999009956.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验