Suppr超能文献

通过从文本来源中提取信息来构建生物知识库。

Constructing biological knowledge bases by extracting information from text sources.

作者信息

Craven M, Kumlien J

机构信息

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3891, USA.

出版信息

Proc Int Conf Intell Syst Mol Biol. 1999:77-86.

Abstract

Recently, there has been much effort in making databases for molecular biology more accessible and interoperable. However, information in text form, such as MEDLINE records, remains a greatly underutilized source of biological information. We have begun a research effort aimed at automatically mapping information from text sources into structured representations, such as knowledge bases. Our approach to this task is to use machine-learning methods to induce routines for extracting facts from text. We describe two learning methods that we have applied to this task--a statistical text classification method, and a relational learning method--and our initial experiments in learning such information-extraction routines. We also present an approach to decreasing the cost of learning information-extraction routines by learning from "weakly" labeled training data.

摘要

最近,人们在使分子生物学数据库更易于访问和互操作方面付出了很多努力。然而,诸如MEDLINE记录等文本形式的信息仍然是一个未得到充分利用的生物信息来源。我们已经开始了一项研究工作,旨在将文本来源的信息自动映射到结构化表示形式,如知识库。我们处理这项任务的方法是使用机器学习方法来归纳从文本中提取事实的例程。我们描述了两种应用于这项任务的学习方法——一种统计文本分类方法和一种关系学习方法——以及我们在学习此类信息提取例程方面的初步实验。我们还提出了一种通过从“弱”标记的训练数据中学习来降低学习信息提取例程成本的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验