Suppr超能文献

基于本体的电子健康记录中临床实体分类的弱监督方法。

Ontology-driven weak supervision for clinical entity classification in electronic health records.

机构信息

Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA.

Department of Computer Science, Stanford University, Stanford, CA, USA.

出版信息

Nat Commun. 2021 Apr 1;12(1):2017. doi: 10.1038/s41467-021-22328-4.

Abstract

In the electronic health record, using clinical notes to identify entities such as disorders and their temporality (e.g. the order of an event relative to a time index) can inform many important analyses. However, creating training data for clinical entity tasks is time consuming and sharing labeled data is challenging due to privacy concerns. The information needs of the COVID-19 pandemic highlight the need for agile methods of training machine learning models for clinical notes. We present Trove, a framework for weakly supervised entity classification using medical ontologies and expert-generated rules. Our approach, unlike hand-labeled notes, is easy to share and modify, while offering performance comparable to learning from manually labeled training data. In this work, we validate our framework on six benchmark tasks and demonstrate Trove's ability to analyze the records of patients visiting the emergency department at Stanford Health Care for COVID-19 presenting symptoms and risk factors.

摘要

在电子健康记录中,使用临床记录来识别疾病等实体及其时间性(例如,事件相对于时间索引的顺序)可以为许多重要的分析提供信息。然而,创建临床实体任务的训练数据是很耗时的,并且由于隐私问题,共享标记数据是具有挑战性的。COVID-19 大流行的信息需求突出了需要为临床记录训练机器学习模型采用敏捷方法。我们提出了 Trove,这是一个使用医学本体和专家生成的规则进行弱监督实体分类的框架。与手工标记的注释不同,我们的方法易于共享和修改,同时提供与从手动标记的训练数据中学习相当的性能。在这项工作中,我们在六个基准任务上验证了我们的框架,并展示了 Trove 分析斯坦福健康保健中心急诊科因 COVID-19 出现症状和风险因素而就诊的患者记录的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51ee/8016863/314760d2c754/41467_2021_22328_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验