Akintonwa D A
CTMB, Calabar, Cross River State, Nigeria.
Med Hypotheses. 2000 Feb;54(2):312-20. doi: 10.1054/mehy.1999.0838.
The mechanism of oxidation or reduction using the electron method was investigated for (I) aniline; (II) nitrobenzene; (III) nitrate; (IV) sulphanilamide; (V) hydrogen peroxide; (VI) hydroxyl free radical; (VII) ferricyanide; (VIII) acetylphenylhydrazine; (IX) nitrite; (X) chlorate and (XI) hydroxylamine respectively. Substances (II), (III), (V), (VI), (VII), (IX), (X) and (XI) evolved as oxidants, with (II), nitrobenzene and (X), chlorate as the most powerful oxidants (number of moles of HbFe(2+)(haemoglobin) of 6 reacting with 1.0 mole of the substance). Substances (I), (IV) and (VII) evolved as reductants of equal reducing power (number of moles of HbFe(3+)(methaemoglobin) of 4 reacting with 1.0 mole of the substance). Using the following equations, the impact of oxidants and reductants on glutathione (GSH) peroxidase, glutathione (GSSC) reductase and NADHmetHb reductase respectively on methaemoglobinaemia generation was investigated. [Equation in text]. Redox potential change (DeltaE' (o)) of 1.77, -1.77 and 1.86 volt and free energy change (DeltaG(o)') of -81, 81 and -85.8 kcal/mol were calculated for GSH peroxidase, GSSG reductase and NADHmetHb reductase systems respectively. In sustained methaemoglobinaemia, these mechanisms predict low levels of NADHmetHb reductase and glutathione peroxidase respectively, but high levels of glutathione reductase in red blood cells on exposure to oxidants. The significance of these mechanisms was investigated in cord blood, neonatal, adult red blood cells and other biological systems. It was concluded that any reaction with a positive DeltaE(o)' and negative DeltaG(o)' with the Fe(3+): Fe(2+)couple will indicate methaemoglobin oxidizing power. The effects on red blood cells and white blood cells were manifested in the biochemical toxicology of nitroso (PhN = 0), arylamine glucuronide (PhNHG) and arene imine respectively.
(I)苯胺;(II)硝基苯;(III)硝酸盐;(IV)磺胺;(V)过氧化氢;(VI)羟基自由基;(VII)铁氰化物;(VIII)乙酰苯肼;(IX)亚硝酸盐;(X)氯酸盐;(XI)羟胺。物质(II)、(III)、(V)、(VI)、(VII)、(IX)、(X)和(XI)作为氧化剂,其中(II)硝基苯和(X)氯酸盐是最强的氧化剂(6摩尔HbFe(2+)(血红蛋白)与1.0摩尔该物质反应)。物质(I)、(IV)和(VIII)作为具有同等还原能力的还原剂(4摩尔HbFe(3+)(高铁血红蛋白)与1.0摩尔该物质反应)。利用以下方程式,分别研究了氧化剂和还原剂对谷胱甘肽(GSH)过氧化物酶、谷胱甘肽(GSSC)还原酶和NADH高铁血红蛋白还原酶在高铁血红蛋白血症产生方面的影响。[文中方程式]。分别计算出GSH过氧化物酶、GSSG还原酶和NADH高铁血红蛋白还原酶系统的氧化还原电位变化(ΔE'(o))为1.77、 - 1.77和1.86伏,自由能变化(ΔG(o)')为 - 81、81和 - 85.8千卡/摩尔。在持续性高铁血红蛋白血症中,这些机制分别预测,红细胞暴露于氧化剂时,NADH高铁血红蛋白还原酶和谷胱甘肽过氧化物酶水平较低,但谷胱甘肽还原酶水平较高。在脐血、新生儿、成人红细胞及其他生物系统中研究了这些机制的意义。得出结论:任何与Fe(3+):Fe(2+)电对反应的ΔE(o)'为正值且ΔG(o)'为负值时,将表明具有高铁血红蛋白氧化能力。对红细胞和白细胞的影响分别体现在亚硝基(PhN = 0)、芳胺葡糖醛酸(PhNHG)和芳烃亚胺的生化毒理学方面。