Suppr超能文献

酵母热休克转录因子的复杂调控

Complex regulation of the yeast heat shock transcription factor.

作者信息

Bonner J J, Carlson T, Fackenthal D L, Paddock D, Storey K, Lea K

机构信息

Department of Biology, Indiana University, Bloomington, Indiana 47405-3700, USA.

出版信息

Mol Biol Cell. 2000 May;11(5):1739-51. doi: 10.1091/mbc.11.5.1739.

Abstract

The yeast heat shock transcription factor (HSF) is regulated by posttranslational modification. Heat and superoxide can induce the conformational change associated with the heat shock response. Interaction between HSF and the chaperone hsp70 is also thought to play a role in HSF regulation. Here, we show that the Ssb1/2p member of the hsp70 family can form a stable, ATP-sensitive complex with HSF-a surprising finding because Ssb1/2p is not induced by heat shock. Phosphorylation and the assembly of HSF into larger, ATP-sensitive complexes both occur when HSF activity decreases, whether during adaptation to a raised temperature or during growth at low glucose concentrations. These larger HSF complexes also form during recovery from heat shock. However, if HSF is assembled into ATP-sensitive complexes (during growth at a low glucose concentration), heat shock does not stimulate the dissociation of the complexes. Nor does induction of the conformational change induce their dissociation. Modulation of the in vivo concentrations of the SSA and SSB proteins by deletion or overexpression affects HSF activity in a manner that is consistent with these findings and suggests the model that the SSA and SSB proteins perform distinct roles in the regulation of HSF activity.

摘要

酵母热休克转录因子(HSF)受翻译后修饰调控。热和超氧化物可诱导与热休克反应相关的构象变化。HSF与伴侣蛋白hsp70之间的相互作用也被认为在HSF调控中发挥作用。在此,我们表明hsp70家族的Ssb1/2p成员可与HSF形成稳定的、对ATP敏感的复合物——这是一个惊人的发现,因为Ssb1/2p不会被热休克诱导。当HSF活性降低时,无论是在适应升高的温度期间还是在低葡萄糖浓度下生长期间,磷酸化以及HSF组装成更大的、对ATP敏感的复合物都会发生。这些更大的HSF复合物在从热休克恢复过程中也会形成。然而,如果HSF组装成对ATP敏感的复合物(在低葡萄糖浓度下生长期间),热休克不会刺激复合物的解离。构象变化的诱导也不会导致它们的解离。通过缺失或过表达来调节SSA和SSB蛋白的体内浓度,会以与这些发现一致的方式影响HSF活性,并提示了SSA和SSB蛋白在HSF活性调控中发挥不同作用的模型。

相似文献

1
Complex regulation of the yeast heat shock transcription factor.
Mol Biol Cell. 2000 May;11(5):1739-51. doi: 10.1091/mbc.11.5.1739.
2
The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
Yeast. 1998 Jun 15;14(8):733-46. doi: 10.1002/(SICI)1097-0061(19980615)14:8<733::AID-YEA270>3.0.CO;2-8.
8
SSB, encoding a ribosome-associated chaperone, is coordinately regulated with ribosomal protein genes.
J Bacteriol. 1999 May;181(10):3136-43. doi: 10.1128/JB.181.10.3136-3143.1999.
10
The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
Nucleic Acids Res. 2001 Apr 15;29(8):1715-23. doi: 10.1093/nar/29.8.1715.

引用本文的文献

1
Genetic inactivation of essential reveals an isolated transcriptional stress response selectively induced by protein misfolding.
Mol Biol Cell. 2023 Sep 1;34(10):ar101. doi: 10.1091/mbc.E23-05-0153. Epub 2023 Jul 19.
2
The life and death of RNA across temperatures.
Comput Struct Biotechnol J. 2022 Aug 8;20:4325-4336. doi: 10.1016/j.csbj.2022.08.008. eCollection 2022.
3
Tracking the Activation of Heat Shock Signaling in Cellular Protection and Damage.
Cells. 2022 May 5;11(9):1561. doi: 10.3390/cells11091561.
4
Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1.
Elife. 2019 Sep 25;8:e47791. doi: 10.7554/eLife.47791.
5
Quantification of Hsp90 availability reveals differential coupling to the heat shock response.
J Cell Biol. 2018 Nov 5;217(11):3809-3816. doi: 10.1083/jcb.201803127. Epub 2018 Aug 21.
6
The Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling pathway.
Nat Commun. 2017 Oct 16;8(1):937. doi: 10.1038/s41467-017-00635-z.
7
Absolute protein quantification of the yeast chaperome under conditions of heat shock.
Proteomics. 2016 Aug;16(15-16):2128-40. doi: 10.1002/pmic.201500503. Epub 2016 Jul 22.
9
Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs.
Nat Rev Microbiol. 2012 Oct;10(10):693-704. doi: 10.1038/nrmicro2875.
10
Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise.
Chem Res Toxicol. 2012 Oct 15;25(10):2036-53. doi: 10.1021/tx300264x. Epub 2012 Jul 31.

本文引用的文献

2
SSB, encoding a ribosome-associated chaperone, is coordinately regulated with ribosomal protein genes.
J Bacteriol. 1999 May;181(10):3136-43. doi: 10.1128/JB.181.10.3136-3143.1999.
6
Direct sensing of heat and oxidation by Drosophila heat shock transcription factor.
Mol Cell. 1998 Jul;2(1):101-8. doi: 10.1016/s1097-2765(00)80118-5.
8
Molecular chaperones as HSF1-specific transcriptional repressors.
Genes Dev. 1998 Mar 1;12(5):654-66. doi: 10.1101/gad.12.5.654.
9
Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae.
FEBS Lett. 1997 Jun 9;409(2):307-11. doi: 10.1016/s0014-5793(97)00535-8.
10
Functional specificity among Hsp70 molecular chaperones.
Science. 1997 Jan 17;275(5298):387-9. doi: 10.1126/science.275.5298.387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验