Sluis-Cremer N, Arion D, Kaushik N, Lim H, Parniak M A
Lady Davis Institute for Medical Research and McGill University AIDS Centre, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada.
Biochem J. 2000 May 15;348 Pt 1(Pt 1):77-82.
Amino acid Lys(65) is part of the highly flexible beta3-beta4 loop in the fingers domain of the 66 kDa subunit of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). Recent crystal data show that the epsilon-amino group of Lys(65) interacts with the gamma-phosphate of the bound deoxynucleoside triphosphate ('dNTP') substrate [Huang, Chopra, Verdine and Harrison (1998) Science 282, 1669-1675]. In order to biochemically define the function of RT Lys(65), we have used site-specific mutagenesis to generate RT with a variety of substitutions at this position, including K65E, K65Q, K65A and K65R. Kinetic analyses demonstrate that if Lys(65) in RT is substituted with an amino acid other than arginine the enzyme exhibits dramatic decreases in the binding affinity (K(m)) for all dNTP substrates, in RT catalytic efficiency (k(cat)/K(m)) and in the mutant enzyme's ability to carry out pyrophosphorolysis, the reverse reaction of DNA synthesis. The pH optimum for the DNA polymerase activity of K65E RT was 6.5, compared to 7.5 for the wild-type enzyme, and 8.0 for the K65R, K65A and K65Q mutants. Molecular modelling studies show that mutations of Lys(65) do not affect the geometry of the loop's alpha-carbon backbone, but rather lead to changes in positioning of the side chains of residues Lys(70) and Arg(72). In particular, Glu in K65E can form a salt bridge with Arg(72), leading to the diminution of the latter residue's interaction with the alpha-phosphate of the dNTP residue. This alteration in dNTP-binding may explain the large pH-dependent changes in both dNTP-binding and catalytic efficiency noted with the enzyme. Furthermore, the K65A, K65Q and K65E mutant enzymes are 100-fold less sensitive to all dideoxynucleoside triphosphate ('ddNTP') inhibitors, whereas the K65R mutation results in a selective 10-fold decrease in binding of ddCTP and ddATP only. This implies that mutations at position 65 in HIV-1 RT influence the nucleotide-binding specificity of the enzyme.
氨基酸赖氨酸(Lys)65是人类免疫缺陷病毒1型(HIV-1)逆转录酶(RT)66 kDa亚基指状结构域中高度灵活的β3-β4环的一部分。最近的晶体数据表明,赖氨酸65的ε-氨基与结合的脱氧核苷三磷酸(“dNTP”)底物的γ-磷酸相互作用[黄、乔普拉、韦尔迪内和哈里森(1998年)《科学》282,1669 - 1675]。为了从生化角度确定RT赖氨酸65的功能,我们使用定点诱变在该位置产生了具有多种取代的RT,包括K65E、K65Q、K65A和K65R。动力学分析表明,如果RT中的赖氨酸65被精氨酸以外的氨基酸取代,该酶对所有dNTP底物的结合亲和力(K_m)、RT催化效率(k_cat/K_m)以及突变酶进行焦磷酸解(DNA合成的逆反应)的能力都会显著降低。K65E RT的DNA聚合酶活性的最适pH为6.5,而野生型酶为7.5,K65R、K65A和K65Q突变体为8.0。分子建模研究表明,赖氨酸65的突变不会影响环的α-碳主链的几何形状,而是导致赖氨酸70和精氨酸72残基侧链位置的变化。特别是,K65E中的谷氨酸可以与精氨酸72形成盐桥,导致后者残基与dNTP残基的α-磷酸的相互作用减弱。dNTP结合的这种改变可能解释了该酶在dNTP结合和催化效率方面随pH的大幅变化。此外,K65A、K65Q和K65E突变酶对所有双脱氧核苷三磷酸(“ddNTP”)抑制剂的敏感性降低100倍,而K65R突变仅导致ddCTP和ddATP结合选择性降低10倍。这意味着HIV-1 RT中65位的突变会影响该酶的核苷酸结合特异性。