Suppr超能文献

DNA 聚合酶从二磷酸底物合成 DNA。

DNA synthesis from diphosphate substrates by DNA polymerases.

机构信息

Department of Chemistry, University of California, Irvine, CA 92697.

Department of Chemistry, University of California, Irvine, CA 92697;

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):980-985. doi: 10.1073/pnas.1712193115. Epub 2018 Jan 16.

Abstract

The activity of DNA polymerase underlies numerous biotechnologies, cell division, and therapeutics, yet the enzyme remains incompletely understood. We demonstrate that both thermostable and mesophilic DNA polymerases readily utilize deoxyribonucleoside diphosphates (dNDPs) for DNA synthesis and inorganic phosphate for the reverse reaction, that is, phosphorolysis of DNA. For Taq DNA polymerase, the s of the dNDP and phosphate substrates are ∼20 and 200 times higher than for dNTP and pyrophosphate, respectively. DNA synthesis from dNDPs is about 17 times slower than from dNTPs, and DNA phosphorolysis about 200 times less efficient than pyrophosphorolysis. Such parameters allow DNA replication without requiring coupled metabolism to sequester the phosphate products, which consequently do not pose a threat to genome stability. This mechanism contrasts with DNA synthesis from dNTPs, which yield high-energy pyrophosphates that have to be hydrolyzed to phosphates to prevent the reverse reaction. Because the last common ancestor was likely a thermophile, dNDPs are plausible substrates for genome replication on early Earth and may represent metabolic intermediates later replaced by the higher-energy triphosphates.

摘要

DNA 聚合酶的活性是许多生物技术、细胞分裂和治疗的基础,但该酶仍未被完全理解。我们证明,耐热和嗜温 DNA 聚合酶都可以很容易地利用脱氧核苷二磷酸(dNDP)进行 DNA 合成,并利用无机磷酸盐进行相反的反应,即 DNA 的磷酸解。对于 Taq DNA 聚合酶,dNDP 和磷酸盐底物的 s 值分别比 dNTP 和焦磷酸盐高约 20 倍和 200 倍。从 dNDP 进行 DNA 合成比从 dNTP 慢约 17 倍,而 DNA 磷酸解的效率比焦磷酸解低约 200 倍。这些参数允许 DNA 复制而无需耦合代谢来隔离磷酸盐产物,因此这些产物不会对基因组稳定性构成威胁。这种机制与从 dNTP 进行 DNA 合成形成对比,从 dNTP 合成产生高能焦磷酸盐,必须将其水解为磷酸盐以防止逆反应。由于最后一个共同祖先很可能是一种嗜热生物,因此 dNDP 可能是早期地球上基因组复制的合理底物,并且可能代表后来被更高能量的三磷酸取代的代谢中间体。

相似文献

1
DNA synthesis from diphosphate substrates by DNA polymerases.
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):980-985. doi: 10.1073/pnas.1712193115. Epub 2018 Jan 16.
2
Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase.
PLoS One. 2008 Apr 30;3(4):e2074. doi: 10.1371/journal.pone.0002074.
3
Thermostable DNA polymerases can perform translesion synthesis using 8-oxoguanine and tetrahydrofuran-containing DNA templates.
Biochim Biophys Acta. 2006 Jan;1764(1):97-104. doi: 10.1016/j.bbapap.2005.11.001. Epub 2005 Dec 1.
4
Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.
J Mol Biol. 2006 Aug 18;361(3):537-50. doi: 10.1016/j.jmb.2006.06.050. Epub 2006 Jul 5.
5
New substrates of DNA polymerases.
FEBS Lett. 1999 Jun 18;453(1-2):6-10. doi: 10.1016/s0014-5793(99)00615-8.
9
Mechanism of Deoxyguanosine Diphosphate Insertion by Human DNA Polymerase β.
Biochemistry. 2021 Feb 9;60(5):373-380. doi: 10.1021/acs.biochem.0c00847. Epub 2021 Jan 21.

引用本文的文献

3
Bst polymerase - a humble relative of Taq polymerase.
Comput Struct Biotechnol J. 2023 Sep 12;21:4519-4535. doi: 10.1016/j.csbj.2023.09.008. eCollection 2023.
4
Microbial gene expression in Guaymas Basin subsurface sediments responds to hydrothermal stress and energy limitation.
ISME J. 2023 Nov;17(11):1907-1919. doi: 10.1038/s41396-023-01492-z. Epub 2023 Sep 1.
5
SARS-CoV-2 RdRp uses NDPs as a substrate and is able to incorporate NHC into RNA from diphosphate form molnupiravir.
Int J Biol Macromol. 2023 Jan 31;226:946-955. doi: 10.1016/j.ijbiomac.2022.12.112. Epub 2022 Dec 14.
6
New insights into DNA polymerase mechanisms provided by time-lapse crystallography.
Curr Opin Struct Biol. 2022 Dec;77:102465. doi: 10.1016/j.sbi.2022.102465. Epub 2022 Sep 26.
8
Pyrophosphate and Irreversibility in Evolution, or why PP Is Not an Energy Currency and why Nature Chose Triphosphates.
Front Microbiol. 2021 Oct 6;12:759359. doi: 10.3389/fmicb.2021.759359. eCollection 2021.
9
Functional Roles of Chelated Magnesium Ions in RNA Folding and Function.
Biochemistry. 2021 Aug 10;60(31):2374-2386. doi: 10.1021/acs.biochem.1c00012. Epub 2021 Jul 28.
10
Modified nucleoside triphosphates in bacterial research for and live-cell applications.
RSC Chem Biol. 2020 Dec 1;1(5):333-351. doi: 10.1039/d0cb00078g. Epub 2020 Sep 14.

本文引用的文献

1
Engineered Polymerases with Altered Substrate Specificity: Expression and Purification.
Curr Protoc Nucleic Acid Chem. 2017 Jun 19;69:4.75.1-4.75.20. doi: 10.1002/cpnc.33.
2
Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4619-4624. doi: 10.1073/pnas.1702729114. Epub 2017 Apr 17.
3
Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5228-36. doi: 10.1073/pnas.1511207112. Epub 2015 Sep 8.
6
Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence.
Anal Biochem. 2013 Oct 15;441(2):133-9. doi: 10.1016/j.ab.2013.07.008. Epub 2013 Jul 16.
7
Enthalpic switch-points and temperature dependencies of DNA binding and nucleotide incorporation by Pol I DNA polymerases.
Biochim Biophys Acta. 2013 Oct;1834(10):2133-8. doi: 10.1016/j.bbapap.2013.06.021. Epub 2013 Jul 10.
8
Observing a DNA polymerase choose right from wrong.
Cell. 2013 Jul 3;154(1):157-68. doi: 10.1016/j.cell.2013.05.048.
10
Watching DNA polymerase η make a phosphodiester bond.
Nature. 2012 Jul 11;487(7406):196-201. doi: 10.1038/nature11181.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验