Department of Chemistry, University of California, Irvine, CA 92697.
Department of Chemistry, University of California, Irvine, CA 92697;
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):980-985. doi: 10.1073/pnas.1712193115. Epub 2018 Jan 16.
The activity of DNA polymerase underlies numerous biotechnologies, cell division, and therapeutics, yet the enzyme remains incompletely understood. We demonstrate that both thermostable and mesophilic DNA polymerases readily utilize deoxyribonucleoside diphosphates (dNDPs) for DNA synthesis and inorganic phosphate for the reverse reaction, that is, phosphorolysis of DNA. For Taq DNA polymerase, the s of the dNDP and phosphate substrates are ∼20 and 200 times higher than for dNTP and pyrophosphate, respectively. DNA synthesis from dNDPs is about 17 times slower than from dNTPs, and DNA phosphorolysis about 200 times less efficient than pyrophosphorolysis. Such parameters allow DNA replication without requiring coupled metabolism to sequester the phosphate products, which consequently do not pose a threat to genome stability. This mechanism contrasts with DNA synthesis from dNTPs, which yield high-energy pyrophosphates that have to be hydrolyzed to phosphates to prevent the reverse reaction. Because the last common ancestor was likely a thermophile, dNDPs are plausible substrates for genome replication on early Earth and may represent metabolic intermediates later replaced by the higher-energy triphosphates.
DNA 聚合酶的活性是许多生物技术、细胞分裂和治疗的基础,但该酶仍未被完全理解。我们证明,耐热和嗜温 DNA 聚合酶都可以很容易地利用脱氧核苷二磷酸(dNDP)进行 DNA 合成,并利用无机磷酸盐进行相反的反应,即 DNA 的磷酸解。对于 Taq DNA 聚合酶,dNDP 和磷酸盐底物的 s 值分别比 dNTP 和焦磷酸盐高约 20 倍和 200 倍。从 dNDP 进行 DNA 合成比从 dNTP 慢约 17 倍,而 DNA 磷酸解的效率比焦磷酸解低约 200 倍。这些参数允许 DNA 复制而无需耦合代谢来隔离磷酸盐产物,因此这些产物不会对基因组稳定性构成威胁。这种机制与从 dNTP 进行 DNA 合成形成对比,从 dNTP 合成产生高能焦磷酸盐,必须将其水解为磷酸盐以防止逆反应。由于最后一个共同祖先很可能是一种嗜热生物,因此 dNDP 可能是早期地球上基因组复制的合理底物,并且可能代表后来被更高能量的三磷酸取代的代谢中间体。