Vogrin T M, Höher J, Arøen A, Woo S L, Harner C D
Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, PA 15213, USA.
Knee Surg Sports Traumatol Arthrosc. 2000;8(2):93-8. doi: 10.1007/s001670050193.
The objective of this study was to determine the effects of sectioning the posterolateral structures (PLS) on knee kinematics and in situ forces in the posterior cruciate ligament (PCL) in response to external and simulated muscle loads. Ten human cadaveric knees were tested using a robotic/universal force-moment sensor testing system. The knees were subjected to three loading conditions: (a) 134-N posterior tibial load, (b) 5-Nm external tibial torque, and (c) isolated hamstring load (40 N biceps/40 N semimembranosus). The knee kinematics and in situ forces in the PCL for the intact and PLS-deficient knee conditions were determined at full extension, 30 degrees, 60 degrees, 90 degrees, and 120 degrees of knee flexion. Under posterior tibial loading posterior tibial translation with PLS deficiency increased significantly at all flexion angles by 5.5+/-1.5 mm to 0.8+/-1.2 mm at full extension and 90 degrees, respectively. The corresponding in situ forces in the PCL increased by 17-19 N at full extension and 30 degrees of knee flexion. Under the external tibial torque, external tibial rotation increased significantly with PLS deficiency by 15.1+/-1.6 degrees at 30 degrees of flexion to 7.7+/-3.5 degrees at 90 degrees, with the in situ forces in the PCL increasing by 15-90 N. The largest increase occurred at 60 degrees to 120 degrees of knee flexion, representing forces two to six times of those in the intact knee. Under the simulated hamstring load, posterior tibial translation and external tibial and varus rotations also increased significantly at all knee flexion angles with PLS deficiency, but this was not so for the in situ forces in the PCL. Our data suggest that injuries to the PLS put the PCL and other soft tissue structures at increased risk of injury due to increased knee motion and the elevated in situ forces in the PCL.
本研究的目的是确定切断后外侧结构(PLS)对膝关节运动学以及后交叉韧带(PCL)在外部和模拟肌肉负荷作用下的原位力的影响。使用机器人/通用力-力矩传感器测试系统对10个尸体人膝关节进行了测试。膝关节承受三种负荷条件:(a)134 N的胫骨后向负荷,(b)5 N·m的外部胫骨扭矩,以及(c)单独的腘绳肌负荷(40 N股二头肌/40 N半膜肌)。在膝关节完全伸直、30度、60度、90度和120度屈曲时,测定完整膝关节和PLS缺损膝关节状态下的膝关节运动学和PCL的原位力。在胫骨后向负荷下,PLS缺损时胫骨后向平移在所有屈曲角度均显著增加,在完全伸直和90度时分别从5.5±1.5 mm增加到0.8±1.2 mm。在膝关节完全伸直和30度屈曲时,PCL相应的原位力增加了17 - 19 N。在外部胫骨扭矩作用下,PLS缺损时外部胫骨旋转显著增加,在30度屈曲时增加15.1±1.6度,在90度时增加到7.7±3.5度,PCL的原位力增加了15 - 90 N。最大增加发生在膝关节60度至120度屈曲时,代表的力是完整膝关节的两到六倍。在模拟腘绳肌负荷下,PLS缺损时在所有膝关节屈曲角度,胫骨后向平移以及外部胫骨和内翻旋转也显著增加,但PCL的原位力并非如此。我们的数据表明,PLS损伤会使PCL和其他软组织结构因膝关节运动增加和PCL原位力升高而受伤风险增加。