Suppr超能文献

共振识别模型(RRM)预测催乳素(PRL)高度保守区域中的氨基酸残基。

The resonant recognition model (RRM) predicts amino acid residues in highly conserved regions of the hormone prolactin (PRL).

作者信息

Hejase de Trad C, Fang Q, Cosic I

机构信息

Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC, Australia.

出版信息

Biophys Chem. 2000 Apr 14;84(2):149-57. doi: 10.1016/s0301-4622(00)00109-5.

Abstract

The resonant recognition model (RRM) is a model which treats the protein sequence as a discrete signal. It has been shown previously that certain periodicities (frequencies) in this signal characterise protein biological function. The RRM was employed to determine the characteristic frequencies of the hormone prolactin (PRL), and to identify amino acids ('hot spots') mostly contributing to these frequencies and thus proposed to mostly contribute to the biological function. The predicted 'hot spot' amino acids, Phe-19, Ser-26, Ser-33, Phe-37, Phe-40, Gly-47, Gly-49, Phe-50, Ser-61, Gly-129, Arg-176, Arg-177, Cys-191 and Arg-192 are found in the highly conserved amino-terminal and C-terminus regions of PRL. Our predictions agree with previous experimentally tested residues by site-direct mutagenesis and photoaffinity labelling.

摘要

共振识别模型(RRM)是一种将蛋白质序列视为离散信号的模型。先前已经表明,该信号中的某些周期性(频率)表征了蛋白质的生物学功能。利用RRM来确定激素催乳素(PRL)的特征频率,并识别对这些频率贡献最大的氨基酸(“热点”),因此认为这些氨基酸对生物学功能贡献最大。预测的“热点”氨基酸,即苯丙氨酸-19、丝氨酸-26、丝氨酸-33、苯丙氨酸-37、苯丙氨酸-40、甘氨酸-47、甘氨酸-49、苯丙氨酸-50、丝氨酸-61、甘氨酸-129、精氨酸-176、精氨酸-177、半胱氨酸-191和精氨酸-192,存在于PRL高度保守的氨基末端和羧基末端区域。我们的预测与先前通过定点诱变和光亲和标记进行实验测试的残基一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验