Hejase de Trad C, Fang Q, Cosic I
Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC, Australia.
Biophys Chem. 2000 Apr 14;84(2):149-57. doi: 10.1016/s0301-4622(00)00109-5.
The resonant recognition model (RRM) is a model which treats the protein sequence as a discrete signal. It has been shown previously that certain periodicities (frequencies) in this signal characterise protein biological function. The RRM was employed to determine the characteristic frequencies of the hormone prolactin (PRL), and to identify amino acids ('hot spots') mostly contributing to these frequencies and thus proposed to mostly contribute to the biological function. The predicted 'hot spot' amino acids, Phe-19, Ser-26, Ser-33, Phe-37, Phe-40, Gly-47, Gly-49, Phe-50, Ser-61, Gly-129, Arg-176, Arg-177, Cys-191 and Arg-192 are found in the highly conserved amino-terminal and C-terminus regions of PRL. Our predictions agree with previous experimentally tested residues by site-direct mutagenesis and photoaffinity labelling.
共振识别模型(RRM)是一种将蛋白质序列视为离散信号的模型。先前已经表明,该信号中的某些周期性(频率)表征了蛋白质的生物学功能。利用RRM来确定激素催乳素(PRL)的特征频率,并识别对这些频率贡献最大的氨基酸(“热点”),因此认为这些氨基酸对生物学功能贡献最大。预测的“热点”氨基酸,即苯丙氨酸-19、丝氨酸-26、丝氨酸-33、苯丙氨酸-37、苯丙氨酸-40、甘氨酸-47、甘氨酸-49、苯丙氨酸-50、丝氨酸-61、甘氨酸-129、精氨酸-176、精氨酸-177、半胱氨酸-191和精氨酸-192,存在于PRL高度保守的氨基末端和羧基末端区域。我们的预测与先前通过定点诱变和光亲和标记进行实验测试的残基一致。