Suppr超能文献

探究轮状病毒NSP4的结构:极端C末端的一段短序列介导与内衣壳颗粒的结合。

Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle.

作者信息

O'Brien J A, Taylor J A, Bellamy A R

机构信息

Microbiology and Virology Research Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand.

出版信息

J Virol. 2000 Jun;74(11):5388-94. doi: 10.1128/jvi.74.11.5388-5394.2000.

Abstract

The rotavirus nonstructural glycoprotein NSP4 functions as the receptor for the inner capsid particle (ICP) which buds into the lumen of the endoplasmic reticulum during virus maturation. The structure of the cytoplasmic domain of NSP4 from rotavirus strain SA11 has been investigated by using limited proteolysis and mass spectrometry. Digestion with trypsin and V8 protease reveals a C-terminal protease-sensitive region that is 28 amino acids long. The minimal sequence requirements for receptor function have been defined by constructing fusions with glutathione S-transferase and assessing their ability to bind ICPs. These experiments demonstrate that 17 to 20 amino acids from the extreme C terminus are necessary and sufficient for ICP binding and that this binding is cooperative. These observations are consistent with a model for the structure of the NSP4 cytoplasmic region in which four flexible regions of 28 amino acids are presented by a protease-resistant coiled-coil tetramerization domain, with only the last approximately 20 amino acids of each peptide interacting with the surface binding sites on the ICP.

摘要

轮状病毒非结构糖蛋白NSP4作为内壳粒(ICP)的受体,在病毒成熟过程中,内壳粒芽生进入内质网腔。利用有限蛋白酶解和质谱分析法对轮状病毒SA11株NSP4的细胞质结构域进行了研究。用胰蛋白酶和V8蛋白酶消化后发现一个C端蛋白酶敏感区,该区长度为28个氨基酸。通过构建与谷胱甘肽S-转移酶的融合体并评估其结合ICP的能力,确定了受体功能所需的最小序列要求。这些实验表明,来自极端C端的17至20个氨基酸对于ICP结合是必要且充分的,并且这种结合是协同性的。这些观察结果与NSP4细胞质区域的结构模型一致,在该模型中,由一个抗蛋白酶的卷曲螺旋四聚化结构域呈现出四个28个氨基酸的柔性区域,每个肽段只有最后约20个氨基酸与ICP上的表面结合位点相互作用。

相似文献

3
A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28.
Virology. 1993 Jun;194(2):665-73. doi: 10.1006/viro.1993.1306.
6
Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4.
Arch Virol. 2007;152(5):847-59. doi: 10.1007/s00705-006-0921-x. Epub 2007 Jan 31.
9
Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4.
Virology. 2008 Mar 30;373(1):211-28. doi: 10.1016/j.virol.2007.11.021. Epub 2007 Dec 31.
10
Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-beta3 and fibronectin.
J Virol. 2004 Sep;78(18):10045-53. doi: 10.1128/JVI.78.18.10045-10053.2004.

引用本文的文献

1
Rapid production of recombinant rotaviruses by overexpression of NSP2 and NSP5 genes with modified nucleotide sequences.
J Virol. 2024 Dec 17;98(12):e0099624. doi: 10.1128/jvi.00996-24. Epub 2024 Nov 4.
2
Spectroscopic analysis of the bacterially expressed head domain of rotavirus VP6.
Biosci Rep. 2024 May 29;44(5). doi: 10.1042/BSR20232178.
3
Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro.
Viruses. 2023 Aug 16;15(8):1750. doi: 10.3390/v15081750.
4
Rotavirus-Induced Lipid Droplet Biogenesis Is Critical for Virus Replication.
Front Physiol. 2022 Mar 23;13:836870. doi: 10.3389/fphys.2022.836870. eCollection 2022.
6
The Guanine Nucleotide Exchange Factor GBF1 Participates in Rotavirus Replication.
J Virol. 2019 Sep 12;93(19). doi: 10.1128/JVI.01062-19. Print 2019 Oct 1.
8
Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection.
J Biol Chem. 2012 Oct 12;287(42):35004-35020. doi: 10.1074/jbc.M112.369595. Epub 2012 Aug 10.
9
Elucidation of the Rotavirus NSP4-Caveolin-1 and -Cholesterol Interactions Using Synthetic Peptides.
J Amino Acids. 2012;2012:575180. doi: 10.1155/2012/575180. Epub 2012 Mar 1.
10
Structural insights into the coupling of virion assembly and rotavirus replication.
Nat Rev Microbiol. 2012 Jan 23;10(3):165-77. doi: 10.1038/nrmicro2673.

本文引用的文献

1
Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea.
Science. 2000 Jan 21;287(5452):491-5. doi: 10.1126/science.287.5452.491.
2
Virus maturation by budding.
Microbiol Mol Biol Rev. 1998 Dec;62(4):1171-90. doi: 10.1128/MMBR.62.4.1171-1190.1998.
3
Genetic characterization of the rotavirus nonstructural protein, NSP4.
Virology. 1997 Sep 29;236(2):258-65. doi: 10.1006/viro.1997.8727.
5
Peptide-surface association: the case of PDZ and PTB domains.
Cell. 1996 Aug 9;86(3):341-3. doi: 10.1016/s0092-8674(00)80105-1.
6
Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein.
Science. 1996 Apr 5;272(5258):101-4. doi: 10.1126/science.272.5258.101.
8
Rotavirus vaccines: success by reassortment?
Science. 1994 Sep 2;265(5177):1389-91. doi: 10.1126/science.8073280.
9
A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28.
Virology. 1993 Jun;194(2):665-73. doi: 10.1006/viro.1993.1306.
10
Pathogenesis of rotavirus-induced diarrhea. Preliminary studies in miniature swine piglet.
Dig Dis Sci. 1984 Nov;29(11):1028-35. doi: 10.1007/BF01311255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验