Gouteux J P, Artzrouni M
Laboratoire d'écologie moléculaire, IBEAS, université de Pau et des Pays de l'Adour, France.
C R Acad Sci III. 2000 Apr;323(4):351-64. doi: 10.1016/s0764-4469(00)00145-1.
Since the end of the 19th century, historic endemic foci of Trypanosoma brucei gambiense sleeping sickness have proven very persistent. A five-compartment mathematical model with open vector populations was developed in order to study the dynamics of this disease in Central Africa. Of particular interest is the rate at which the disease spreads or goes to extinction at the beginning of an epidemic outbreak. A measure of this rate is the initial halving/doubling time T(o) of the numbers infected; T(o) is a doubling time when the basic reproduction number Ro > 1 and a halving time when Ro < 1. For realistic parameter values, T(o) can be quite large (i.e. several years or even decades) which corresponds to a persistent low-level endemic brought about by an Ro either just above 1 (slow spread) or just below 1 (slow extinction). A resurgence of historical foci can then be caused by a small shift in parameter values that brings Ro well above 1 and decreases T(o). In addition, when Ro is less than 1 (in the absence of vector migrations), simulations show that a very small percentage of infected immigrant flies can bring about high prevalence rates in the human population. The model is validated with field data from historical Congolese, Central and West African foci of the past.
自19世纪末以来,布氏冈比亚锥虫昏睡病的历史流行病灶已被证明具有很强的持续性。为了研究这种疾病在中非的动态,开发了一个具有开放媒介种群的五室数学模型。特别令人感兴趣的是在疫情爆发初期疾病传播或灭绝的速率。这个速率的一个度量是感染人数的初始减半/翻倍时间T(o);当基本繁殖数Ro>1时,T(o)是翻倍时间,当Ro<1时,T(o)是减半时间。对于实际的参数值,T(o)可能相当大(即数年甚至数十年),这对应于由略高于1(缓慢传播)或略低于1(缓慢灭绝)的Ro导致的持续低水平流行。参数值的微小变化会使Ro远高于1并减小T(o),进而可能导致历史病灶的复发。此外,当Ro小于1时(在没有媒介迁移的情况下),模拟表明,极少数受感染的移民苍蝇会导致人群中的高流行率。该模型用过去刚果、中非和西非历史病灶的现场数据进行了验证。