Lee J Y, Cole T B, Palmiter R D, Koh J Y
National Creative Research Initiative Center for the Study of CNS Zinc,University of Ulsan College of Medicine, Seoul 138-736, Korea.
J Neurosci. 2000 Jun 1;20(11):RC79. doi: 10.1523/JNEUROSCI.20-11-j0003.2000.
In several brain injury models, zinc accumulates in degenerating neuronal somata. Suggesting that such zinc accumulation may play a causal role in neurodegeneration, zinc chelation attenuates neuronal death. Because histochemically reactive zinc is present in and released from synaptic vesicles of glutamatergic neurons in the forebrain, it was proposed that zinc translocation from presynaptic terminals to postsynaptic neurons may be the mechanism of toxic zinc accumulation. To test this hypothesis, kainate seizure-induced neuronal death was examined in zinc transporter 3 gene (ZnT3)-null mice, a strain that completely lacks histochemically reactive zinc in synaptic vesicles. Intraperitoneal injection of kainate induced seizures to a similar degree in wild type and ZnT3-null mice. Staining of hippocampal sections with a zinc-specific fluorescent dye, N-(6-methoxy-8-quinolyl)-p-carboxybenzoylsulfonamide, revealed that zinc accumulated in degenerating CA1 and CA3 neurons in both groups, indicating that zinc originated from sources other than synaptic vesicles. Injection of CaEDTA into the cerebral ventricle almost completely blocked zinc accumulation in ZnT3-null mice, suggesting that increases in extracellular zinc concentrations may be a critical event for zinc accumulation. Arguing against the possibility that zinc accumulation results from nonspecific breakdown of zinc-containing proteins, injection of kainate into the cerebellum did not induce zinc accumulation in degenerating granule neurons. Taken together, these results support the existing idea that zinc is released into extracellular space and then enters neurons to exert a cytotoxic effect. However, the origin of zinc is not likely to be synaptic vesicles, because zinc accumulation robustly occurs in ZnT3-null mice lacking synaptic vesicle zinc.
在多种脑损伤模型中,锌会在退化的神经元胞体中蓄积。锌螯合作用可减轻神经元死亡,这表明这种锌蓄积可能在神经退行性变中起因果作用。由于在前脑谷氨酸能神经元的突触小泡中存在且会释放组织化学活性锌,因此有人提出锌从突触前终末转运至突触后神经元可能是有毒锌蓄积的机制。为了验证这一假说,在锌转运体3基因(ZnT3)缺失的小鼠中检测了海藻酸诱导的癫痫发作所致神经元死亡,该品系小鼠的突触小泡中完全缺乏组织化学活性锌。腹腔注射海藻酸在野生型和ZnT3缺失小鼠中诱发癫痫发作的程度相似。用锌特异性荧光染料N -(6 - 甲氧基 - 8 - 喹啉基)- 对羧基苯甲酰磺酰胺对海马切片进行染色,结果显示两组中退化的CA1和CA3神经元中均有锌蓄积,这表明锌并非来源于突触小泡。向脑室注射CaEDTA几乎完全阻断了ZnT3缺失小鼠中的锌蓄积,这表明细胞外锌浓度升高可能是锌蓄积的关键事件。向小脑注射海藻酸并未在退化的颗粒神经元中诱导锌蓄积,这反驳了锌蓄积是由含锌蛋白质非特异性分解导致的可能性。综上所述,这些结果支持了现有的观点,即锌释放到细胞外空间,然后进入神经元发挥细胞毒性作用。然而,锌的来源不太可能是突触小泡,因为在缺乏突触小泡锌的ZnT3缺失小鼠中锌仍大量蓄积。