Suppr超能文献

艾滋病合并播散性鸟分枝杆菌复合群感染患者CD3+ CD4-T淋巴细胞增多:一项前瞻性研究。阿基坦地区艾滋病临床流行病学研究组(GECSA)

Increase in CD3+ CD4- T lymphocytes in patients with AIDS and disseminated Mycobacterium avium-intracellulare complex infection: a prospective study. GECSA. Groupe d'Epidemiologie Clinique du SIDA en Aquitaine.

作者信息

Bonnet F, Dequae-Merchadou L, Taupin J L, Sire S, Dupon M, Ragnaud J M, Lacoste D, Texier-Maugein J, Romagné F, Dabis F, Pellegrin J L, Moreau J F

机构信息

Service de médecine interne et maladies infectieuses, Hôpital du Haut-Lévêque, CHU Bordeaux, France.

出版信息

Microbes Infect. 1999 Aug;1(10):771-6. doi: 10.1016/s1286-4579(99)80079-3.

Abstract

In a retrospective study, an increase in double-negative (CD3+ CD4- CD8-) (DN) T lymphocytes has been shown to be an independent predictor of disseminated Mycobacterium avium complex (D.MAC) infection in patients with less than 100 CD4+ T cells per mm3. To better characterize this cell expansion, a prospective study was designed. From July 1995 to April 1997, 206 HIV-infected patients with less than 100 CD4+ T cells per mm3 were prospectively followed up and immunophenotyped. The median followup was 1.1 year (+/-0.5 year), and 14 new D.MAC infections were diagnosed among 84 first AIDS-defining events. In univariate and multivariate analyses, D.MAC infections were the only opportunistic infection with a significant increase in DN T-cell percentage (median = 6.6; range = 1.7 to 24.5, P = 0.004) compared with patients without any opportunistic infection. This alteration in T-lymphocyte count could constitute a predictor for D.MAC infection in clinical practice.

摘要

在一项回顾性研究中,已表明双阴性(CD3+ CD4- CD8-)(DN)T淋巴细胞增加是每立方毫米CD4+ T细胞少于100个的患者发生播散性鸟分枝杆菌复合体(D.MAC)感染的独立预测指标。为了更好地描述这种细胞扩增情况,设计了一项前瞻性研究。1995年7月至1997年4月,对206例每立方毫米CD4+ T细胞少于100个的HIV感染患者进行了前瞻性随访和免疫表型分析。中位随访时间为1.1年(±0.5年),在84例首次出现艾滋病定义事件的患者中诊断出14例新的D.MAC感染。在单变量和多变量分析中,与无任何机会性感染的患者相比,D.MAC感染是唯一一种DN T细胞百分比显著增加的机会性感染(中位值 = 6.6;范围 = 1.7至24.5,P = 0.004)。T淋巴细胞计数的这种改变可能构成临床实践中D.MAC感染的一个预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验